skip to main content

This content will become publicly available on February 17, 2023

Title: Multi-wavelength constraints on the outflow properties of the extremely bright millisecond radio bursts from the galactic magnetar SGR 1935 + 2154
ABSTRACT Extremely bright coherent radio bursts with millisecond duration, reminiscent of cosmological fast radio bursts, were codetected with anomalously-hard X-ray bursts from a Galactic magnetar SGR 1935 + 2154. We investigate the possibility that the event was triggered by the magnetic energy injection inside the magnetosphere, thereby producing magnetically-trapped fireball (FB) and relativistic outflows simultaneously. The thermal component of the X-ray burst is consistent with a trapped FB with an average temperature of ∼200–300 keV and size of ∼105 cm. Meanwhile, the non-thermal component of the X-ray burst and the coherent radio burst may arise from relativistic outflows. We calculate the dynamical evolution of the outflow, launched with an energy budget of 1039–1040 erg comparable to that for the trapped FB, for different initial baryon load η and magnetization σ0. If hard X-ray and radio bursts are both produced by the energy dissipation of the outflow, the outflow properties are constrained by combining the conditions for photon escape and the intrinsic timing offset ≲ 10 ms among radio and X-ray burst spikes. We show that the hard X-ray burst must be generated at rX ≳ 108 cm from the magnetar, irrespective of the emission mechanism. Moreover, we find that the outflow quickly accelerates up more » to a Lorentz factor of 102 ≲ Γ ≲ 103 by the time it reaches the edge of the magnetosphere and the dissipation occurs at 1012 cm ≲ rradio, X ≲ 1014 cm. Our results imply either extremely-clean (η ≳ 104) or highly-magnetized (σ0 ≳ 103) outflows, which might be consistent with the rarity of the phenomenon. « less
Authors:
; ;
Award ID(s):
2108467 2108466 1908689
Publication Date:
NSF-PAR ID:
10349761
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
511
Issue:
3
Page Range or eLocation-ID:
3138 to 3149
ISSN:
0035-8711
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The discovery of a fast radio burst (FRB) in our Galaxy associated with a magnetar (neutron star with strong magnetic field) has provided a critical piece of information to help us finally understand these enigmatic transients. We show that the volumetric rate of Galactic-FRB like events is consistent with the faint end of the cosmological FRB rate, and hence they most likely belong to the same class of transients. The Galactic FRB had an accompanying X-ray burst, but many X-ray bursts from the same object had no radio counterpart. Their relative rates suggest that for every FRB there are roughly 102–103 X-ray bursts. The radio light curve of the Galactic FRB had two spikes, separated by 30 ms in the 400–800 MHz frequency band. This is an important clue and highly constraining of the class of models where the radio emission is produced outside the light cylinder of the magnetar. We suggest that magnetic disturbances close to the magnetar surface propagate to a distance of a few tens of neutron star radii where they damp and produce radio emission. The coincident hard X-ray spikes associated with the two FRB pulses seen in this burst and the flux ratio between the twomore »frequency bands can be understood in this scenario. This model provides a unified picture for faint bursts like the Galactic FRB as well as the bright events seen at cosmological distances.« less
  2. Abstract

    The most common form of magnetar activity is short X-ray bursts, with durations from milliseconds to seconds, and luminosities ranging from 1036–1043erg s−1. Recently, an X-ray burst from the galactic magnetar SGR 1935+2154 was detected to be coincident with two fast radio burst (FRB) like events from the same source, providing evidence that FRBs may be linked to magnetar bursts. Using fully 3D force-free electrodynamics simulations, we show that such magnetar bursts may be produced by Alfvén waves launched from localized magnetar quakes: a wave packet propagates to the outer magnetosphere, becomes nonlinear, and escapes the magnetosphere, forming an ultra-relativistic ejecta. The ejecta pushes open the magnetospheric field lines, creating current sheets behind it. Magnetic reconnection can happen at these current sheets, leading to plasma energization and X-ray emission. The angular size of the ejecta can be compact, ≲1 sr if the quake launching region is small, ≲0.01 sr at the stellar surface. We discuss implications for the FRBs and the coincident X-ray burst from SGR 1935+2154.

  3. ABSTRACT The composition of relativistic outflows producing gamma-ray bursts is a long-standing open question. One of the main arguments in favour of magnetically dominated outflows is the absence of photospheric component in their broad-band time-resolved spectra, with such notable example as GRB 080916C. Here, we perform a time-resolved analysis of this burst and confirm the previous detection of an additional spectral component. We show that this subdominant component is consistent with the photosphere of ultrarelativistic baryonic outflow, deep in the coasting regime. We argue that, contrary to previous statements, the magnetic dominance of the outflow is not required for the interpretation of this GRB. Moreover, simultaneous detection of high-energy emission in its prompt phase requires departure from a one-zone emission model.
  4. ABSTRACT

    Evidence is mounting that recent multiwavelength detections of fast blue optical transients (FBOTs) in star-forming galaxies comprise a new class of transients, whose origin is yet to be understood. We show that hydrogen-rich collapsing stars that launch relativistic jets near the central engine can naturally explain the entire set of FBOT observables. The jet–star interaction forms a mildly relativistic shocked jet (inner cocoon) component, which powers cooling emission that dominates the high velocity optical signal during the first few weeks, with a typical energy of ∼1050–1051 erg. During this time, the cocoon radial energy distribution implies that the optical light curve exhibits a fast decay of $L \,\, \buildrel\propto \over \sim \,\,t^{-2.4}$. After a few weeks, when the velocity of the emitting shell is ∼0.01 c, the cocoon becomes transparent, and the cooling envelope governs the emission. The interaction between the cocoon and the dense circumstellar winds generates synchrotron self-absorbed emission in the radio bands, featuring a steady rise on a month time-scale. After a few months the relativistic outflow decelerates, enters the observer’s line of sight, and powers the peak of the radio light curve, which rapidly decays thereafter. The jet (and the inner cocoon) becomes optically thinmore »to X-rays ∼day after the collapse, allowing X-ray photons to diffuse from the central engine that launched the jet to the observer. Cocoon cooling emission is expected at higher volumetric rates than gamma-ray bursts (GRBs) by a factor of a few, similar to FBOTs. We rule out uncollimated outflows, however, both GRB jets and failed collimated jets are compatible with all observables.

    « less
  5. Abstract One scenario for the generation of fast radio bursts (FRBs) is magnetic reconnection in a current sheet of the magnetar wind. Compressed by a strong magnetic pulse induced by a magnetar flare, the current sheet fragments into a self-similar chain of magnetic islands. Time-dependent plasma currents at their interfaces produce coherent radiation during their hierarchical coalescence. We investigate this scenario using 2D radiative relativistic particle-in-cell simulations to compute the efficiency of the coherent emission and to obtain frequency scalings. Consistent with expectations, a fraction of the reconnected magnetic field energy, f ∼ 0.002, is converted to packets of high-frequency fast magnetosonic waves, which can escape from the magnetar wind as radio emission. In agreement with analytical estimates, we find that magnetic pulses of 10 47 erg s −1 can trigger relatively narrowband GHz emission with luminosities of approximately 10 42 erg s −1 , sufficient to explain bright extragalactic FRBs. The mechanism provides a natural explanation for a downward frequency drift of burst signals, as well as the ∼100 ns substructure recently detected in FRB 20200120E .