skip to main content


Title: Multi-wavelength constraints on the outflow properties of the extremely bright millisecond radio bursts from the galactic magnetar SGR 1935 + 2154
ABSTRACT Extremely bright coherent radio bursts with millisecond duration, reminiscent of cosmological fast radio bursts, were codetected with anomalously-hard X-ray bursts from a Galactic magnetar SGR 1935 + 2154. We investigate the possibility that the event was triggered by the magnetic energy injection inside the magnetosphere, thereby producing magnetically-trapped fireball (FB) and relativistic outflows simultaneously. The thermal component of the X-ray burst is consistent with a trapped FB with an average temperature of ∼200–300 keV and size of ∼105 cm. Meanwhile, the non-thermal component of the X-ray burst and the coherent radio burst may arise from relativistic outflows. We calculate the dynamical evolution of the outflow, launched with an energy budget of 1039–1040 erg comparable to that for the trapped FB, for different initial baryon load η and magnetization σ0. If hard X-ray and radio bursts are both produced by the energy dissipation of the outflow, the outflow properties are constrained by combining the conditions for photon escape and the intrinsic timing offset ≲ 10 ms among radio and X-ray burst spikes. We show that the hard X-ray burst must be generated at rX ≳ 108 cm from the magnetar, irrespective of the emission mechanism. Moreover, we find that the outflow quickly accelerates up to a Lorentz factor of 102 ≲ Γ ≲ 103 by the time it reaches the edge of the magnetosphere and the dissipation occurs at 1012 cm ≲ rradio, X ≲ 1014 cm. Our results imply either extremely-clean (η ≳ 104) or highly-magnetized (σ0 ≳ 103) outflows, which might be consistent with the rarity of the phenomenon.  more » « less
Award ID(s):
2108467 2108466 1908689
NSF-PAR ID:
10349761
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
511
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
3138 to 3149
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The origins of the various outbursts of hard X-rays from magnetars (highly magnetized neutron stars) are still unknown. We identify instabilities in relativistic magnetospheres that can explain a range of X-ray flare luminosities. Crustal surface motions can twist the magnetar magnetosphere by shifting the frozen-in footpoints of magnetic field lines in current-carrying flux bundles. Axisymmetric (2D) magnetospheres exhibit strong eruptive dynamics, i.e., catastrophic lateral instabilities triggered by a critical footpoint displacement ofψcritπ. In contrast, our new three-dimensional (3D) twist models with finite surface extension capture important non-axisymmetric dynamics of twisted force-free flux bundles in dipolar magnetospheres. Besides the well-established global eruption resulting (as in 2D) from lateral instabilities, such 3D structures can develop helical, kink-like dynamics, and dissipate energy locally (confined eruptions). Up to 25% of the induced twist energy is dissipated and available to power X-ray flares in powerful global eruptions, with most of our models showing an energy release in the range of the most common X-ray outbursts, ≲1043erg. Such events occur when significant energy builds up while deeply buried in the dipole magnetosphere. Less energetic outbursts likely precede powerful flares, due to intermittent instabilities and confined eruptions of a continuously twisting flux tube. Upon reaching a critical state, global eruptions produce the necessary Poynting-flux-dominated outflows required by models prescribing the fast radio burst production in the magnetar wind—for example, via relativistic magnetic reconnection or shocks.

     
    more » « less
  2. null (Ed.)
    ABSTRACT The discovery of a fast radio burst (FRB) in our Galaxy associated with a magnetar (neutron star with strong magnetic field) has provided a critical piece of information to help us finally understand these enigmatic transients. We show that the volumetric rate of Galactic-FRB like events is consistent with the faint end of the cosmological FRB rate, and hence they most likely belong to the same class of transients. The Galactic FRB had an accompanying X-ray burst, but many X-ray bursts from the same object had no radio counterpart. Their relative rates suggest that for every FRB there are roughly 102–103 X-ray bursts. The radio light curve of the Galactic FRB had two spikes, separated by 30 ms in the 400–800 MHz frequency band. This is an important clue and highly constraining of the class of models where the radio emission is produced outside the light cylinder of the magnetar. We suggest that magnetic disturbances close to the magnetar surface propagate to a distance of a few tens of neutron star radii where they damp and produce radio emission. The coincident hard X-ray spikes associated with the two FRB pulses seen in this burst and the flux ratio between the two frequency bands can be understood in this scenario. This model provides a unified picture for faint bursts like the Galactic FRB as well as the bright events seen at cosmological distances. 
    more » « less
  3. Abstract

    The most common form of magnetar activity is short X-ray bursts, with durations from milliseconds to seconds, and luminosities ranging from 1036–1043erg s−1. Recently, an X-ray burst from the galactic magnetar SGR 1935+2154 was detected to be coincident with two fast radio burst (FRB) like events from the same source, providing evidence that FRBs may be linked to magnetar bursts. Using fully 3D force-free electrodynamics simulations, we show that such magnetar bursts may be produced by Alfvén waves launched from localized magnetar quakes: a wave packet propagates to the outer magnetosphere, becomes nonlinear, and escapes the magnetosphere, forming an ultra-relativistic ejecta. The ejecta pushes open the magnetospheric field lines, creating current sheets behind it. Magnetic reconnection can happen at these current sheets, leading to plasma energization and X-ray emission. The angular size of the ejecta can be compact, ≲1 sr if the quake launching region is small, ≲0.01 sr at the stellar surface. We discuss implications for the FRBs and the coincident X-ray burst from SGR 1935+2154.

     
    more » « less
  4. We present a detailed follow-up of the very energetic GRB 210905A at a high redshift of z  = 6.312 and its luminous X-ray and optical afterglow. Following the detection by Swift and Konus- Wind , we obtained a photometric and spectroscopic follow-up in the optical and near-infrared (NIR), covering both the prompt and afterglow emission from a few minutes up to 20 Ms after burst. With an isotropic gamma-ray energy release of E iso = 1.27 −0.19 +0.20 × 10 54 erg, GRB 210905A lies in the top ∼7% of gamma-ray bursts (GRBs) in the Konus- Wind catalogue in terms of energy released. Its afterglow is among the most luminous ever observed, and, in particular, it is one of the most luminous in the optical at t  ≳ 0.5 d in the rest frame. The afterglow starts with a shallow evolution that can be explained by energy injection, and it is followed by a steeper decay, while the spectral energy distribution is in agreement with slow cooling in a constant-density environment within the standard fireball theory. A jet break at ∼46.2 ± 16.3 d (6.3 ± 2.2 d rest-frame) has been observed in the X-ray light curve; however, it is hidden in the H band due to a constant contribution from the host galaxy and potentially from a foreground intervening galaxy. In particular, the host galaxy is only the fourth GRB host at z  > 6 known to date. By assuming a number density n  = 1 cm −3 and an efficiency η  = 0.2, we derived a half-opening angle of 8.4 ° ±1.0°, which is the highest ever measured for a z  ≳ 6 burst, but within the range covered by closer events. The resulting collimation-corrected gamma-ray energy release of ≃1 × 10 52 erg is also among the highest ever measured. The moderately large half-opening angle argues against recent claims of an inverse dependence of the half-opening angle on the redshift. The total jet energy is likely too large to be sustained by a standard magnetar, and it suggests that the central engine of this burst was a newly formed black hole. Despite the outstanding energetics and luminosity of both GRB 210905A and its afterglow, we demonstrate that they are consistent within 2 σ with those of less distant bursts, indicating that the powering mechanisms and progenitors do not evolve significantly with redshift. 
    more » « less
  5. ABSTRACT The composition of relativistic outflows producing gamma-ray bursts is a long-standing open question. One of the main arguments in favour of magnetically dominated outflows is the absence of photospheric component in their broad-band time-resolved spectra, with such notable example as GRB 080916C. Here, we perform a time-resolved analysis of this burst and confirm the previous detection of an additional spectral component. We show that this subdominant component is consistent with the photosphere of ultrarelativistic baryonic outflow, deep in the coasting regime. We argue that, contrary to previous statements, the magnetic dominance of the outflow is not required for the interpretation of this GRB. Moreover, simultaneous detection of high-energy emission in its prompt phase requires departure from a one-zone emission model. 
    more » « less