skip to main content

Title: Discovery of 16 New Members of the Solar Neighborhood Using Proper Motions from CatWISE2020
Abstract In an effort to identify nearby and unusual cold objects in the solar neighborhood, we searched for previously unidentified moving objects using CatWISE2020 proper motion data combined with machine learning methods. We paired the motion candidates with their counterparts in 2MASS, UHS, and VHS. Then we searched for white dwarf, brown dwarf, and subdwarf outliers on the resulting color–color diagrams. This resulted in the discovery of 16 new dwarfs, including 2 nearby M dwarfs (<30 pc), a possible young L dwarf, a high-motion early-T dwarf, and 3 later-T dwarfs. This research represents a step forward in completing the census of the Sun’s neighbors.
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
2009136 2009177
Publication Date:
NSF-PAR ID:
10349773
Journal Name:
The Astronomical Journal
Volume:
163
Issue:
3
Page Range or eLocation-ID:
116
ISSN:
0004-6256
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We report the result of searching for globular clusters (GCs) around 55 Milky Way (MW) satellite dwarf galaxies within the distance of 450 kpc from the Galactic Centre except for the Large and Small Magellanic Clouds and the Sagittarius dwarf. For each dwarf, we analyse the stellar distribution of sources in Gaia DR2, selected by magnitude, proper motion, and source morphology. Using the kernel density estimation of stellar number counts, we identify 11 possible GC candidates. Cross-matched with existing imaging data, all 11 objects are known either GCs or galaxies and only Fornax GC 1–6 among them are associated with the targeted dwarf galaxy. Using simulated GCs, we calculate the GC detection limit $M_{\rm V}^{\rm lim}$ that spans the range from $M_{\rm V}^{\rm lim}\sim -7$ for distant dwarfs to $M_{\rm V}^{\rm lim}\sim 0$ for nearby systems. Assuming a Gaussian GC luminosity function, we compute that the completeness of the GC search is above 90 per cent for most dwarf galaxies. We construct the 90 per cent credible intervals/upper limits on the GC specific frequency SN of the MW dwarf galaxies: 12 < SN < 47 for Fornax, SN < 20 for the dwarfs with −12 < MV < −10, SNmore »< 30 for the dwarfs with −10 < MV < −7, and SN < 90 for the dwarfs with MV > −7. Based on SN, we derive the probability of galaxies hosting GCs given their luminosity, finding that the probability of galaxies fainter than MV = −9 to host GCs is lower than 0.1.« less
  2. Abstract Through the Backyard Worlds: Planet 9 citizen science project we discovered a late-type L dwarf co-moving with the young K0 star BD+60 1417 at a projected separation of 37″ or 1662 au. The secondary—CWISER J124332.12+600126.2 (W1243)—is detected in both the CatWISE2020 and 2MASS reject tables. The photometric distance and CatWISE proper motion both match that of the primary within ∼1 σ and our estimates for a chance alignment yield a zero probability. Follow-up near-infrared spectroscopy reveals W1243 to be a very red 2MASS ( J – K s = 2.72), low surface gravity source that we classify as L6–L8 γ . Its spectral morphology strongly resembles that of confirmed late-type L dwarfs in 10–150 Myr moving groups as well as that of planetary mass companions. The position on near- and mid-infrared color–magnitude diagrams indicates the source is redder and fainter than the field sequence, a telltale sign of an object with thick clouds and a complex atmosphere. For the primary we obtained new optical spectroscopy and analyzed all available literature information for youth indicators. We conclude that the Li i abundance, its loci on color–magnitude and color–color diagrams, and the rotation rate revealed in multiple TESS sectors are allmore »consistent with an age of 50–150 Myr. Using our re-evaluated age of the primary and the Gaia parallax, along with the photometry and spectrum for W1243, we find T eff = 1303 ± 31 K, log g = 4.3 ± 0.17 cm s −2 , and a mass of 15 ± 5 M Jup . We find a physical separation of ∼1662 au and a mass ratio of ∼0.01 for this system. Placing it in the context of the diverse collection of binary stars, brown dwarfs, and planetary companions, the BD+60 1417 system falls in a sparsely sampled area where the formation pathway is difficult to assess.« less
  3. Abstract We present the third discovery from the COol Companions ON Ultrawide orbiTS (COCONUTS) program, the COCONUTS-3 system, composed of the young M5 primary star UCAC4 374−046899 and the very red L6 dwarf WISEA J081322.19−152203.2. These two objects have a projected separation of 61 ′ ′ (1891 au) and are physically associated given their common proper motions and estimated distances. The primary star, COCONUTS-3A, has a mass of 0.123 ± 0.006 M ⊙ , and we estimate its age as 100 Myr to 1 Gyr based on its stellar activity (via H α and X-ray emission), kinematics, and spectrophotometric properties. We derive its bulk metallicity as 0.21 ± 0.07 dex using empirical calibrations established by older and higher-gravity M dwarfs and find that this [Fe/H] could be slightly underestimated according to PHOENIX models given COCONUTS-3A’s younger age. The companion, COCONUTS-3B, has a near-infrared spectral type of L6 ± 1 int-g , and we infer physical properties of T eff = 1362 − 73 + 48 K, log ( g ) = 4.96 − 0.34 + 0.15 dex, R = 1.03 − 0.06 + 0.12 R Jup , and M = 39 − 18 + 11 M Jup using its bolometricmore »luminosity, its host star’s age, and hot-start evolution models. We construct cloudy atmospheric model spectra at the evolution-based physical parameters and compare them to COCONUTS-3B’s spectrophotometry. We find that this companion possesses ample condensate clouds in its photosphere ( f sed = 1) with the data–model discrepancies likely due to the models using an older version of the opacity database. Compared to field-age L6 dwarfs, COCONUTS-3B has fainter absolute magnitudes and a 120 K cooler T eff . Also, the J − K color of this companion is among the reddest for ultracool benchmarks with ages older than a few hundred megayears. COCONUTS-3 likely formed in the same fashion as stellar binaries given the companion-to-host mass ratio of 0.3 and represents a valuable benchmark to quantify the systematics of substellar model atmospheres.« less
  4. Context. The Transiting Exoplanet Survey Satellite (TESS) mission is revolutionizing the blossoming area of asteroseismology, particularly of pulsating white dwarfs and pre-white dwarfs, thus continuing the impulse of its predecessor, the Kepler mission. Aims. In this paper, we present the observations from the extended TESS mission in both 120 s short-cadence and 20 s ultra-short-cadence mode of two pre-white dwarf stars showing hydrogen deficiency. We identify them as two new GW Vir stars, TIC 333432673 and TIC 095332541. We apply the tools of asteroseismology with the aim of deriving their structural parameters and seismological distances. Methods. We carried out a spectroscopic analysis and a spectral fitting of TIC 333432673 and TIC 095332541. We also processed and analyzed the high-precision TESS photometric light curves of the two target stars, and derived their oscillation frequencies. We performed an asteroseismological analysis of these stars on the basis of PG 1159 evolutionary models that take into account the complete evolution of the progenitor stars. We searched for patterns of uniform period spacings in order to constrain the stellar mass of the stars. We employed the individual observed periods to search for a representative seismological model. Results. The analysis of the TESS light curves ofmore »TIC 333432673 and TIC 095332541 reveals the presence of several oscillations with periods ranging from 350 to 500 s associated to typical gravity ( g )-modes. From follow-up ground-based spectroscopy, we find that both stars have a similar effective temperature ( T eff  = 120 000 ± 10 000 K) and surface gravity (log g  = 7.5 ± 0.5), but a different He/C composition of their atmosphere. On the basis of PG 1159 evolutionary tracks, we derived a spectroscopic mass of M ⋆ = 0.58 −0.08 +0.16   M ⊙ for both stars. Our asteroseismological analysis of TIC 333432673 allowed us to find a constant period spacing compatible with a stellar mass M ⋆  ∼ 0.60 − 0.61  M ⊙ , and an asteroseismological model for this star with a stellar mass M ⋆ = 0.589 ± 0.020 M ⊙ , as well as a seismological distance of d = 459 −156 +188 pc. For this star, we find an excellent agreement between the different methods to infer the stellar mass, and also between the seismological distance and that measured with Gaia ( d Gaia = 389 −5.2 +5.6 pc). For TIC 095332541, we have found a possible period spacing that suggests a stellar mass of M ⋆  ∼ 0.55 − 0.57  M ⊙ . Unfortunately, we have not been able to find an asteroseismological model for this star. Conclusions. Using the high-quality data collected by the TESS space mission and follow-up spectroscopy, we have been able to discover and characterize two new GW Vir stars. The TESS mission is having, and will continue to have, an unprecedented impact on the area of white-dwarf asteroseismology.« less
  5. Abstract

    M dwarfs are favorable targets for exoplanet detection with current instrumentation, but stellar companions can induce false positives and inhibit planet characterization. Knowledge of stellar companions is also critical to our understanding of how binary stars form and evolve. We have therefore conducted a survey of stellar companions around nearby M dwarfs, and here we present our new discoveries. Using the Differential Speckle Survey Instrument at the 4.3 m Lowell Discovery Telescope, and the similar NN-EXPLORE Exoplanet Stellar Speckle Imager at the 3.5 m WIYN telescope, we carried out a volume-limited survey of M-dwarf multiplicity to 15 parsecs, with a special emphasis on including the later M dwarfs that were overlooked in previous surveys. Additional brighter targets at larger distances were included for a total sample size of 1070 M dwarfs. Observations of these 1070 targets revealed 26 new companions; 22 of these systems were previously thought to be single. If all new discoveries are confirmed, then the number of known multiples in the sample will increase by 7.6%. Using our observed properties, as well as the parallaxes and 2MASSKmagnitudes for these objects, we calculate the projected separation, and estimate the mass ratio and component spectral types, for thesemore »systems. We report the discovery of a new M-dwarf companion to the white dwarf Wolf 672 A, which hosts a known M-dwarf companion as well, making the system trinary. We also examine the possibility that the new companion to 2MASS J13092185-2330350 is a brown dwarf. Finally, we discuss initial insights from the POKEMON survey.

    « less