skip to main content


Title: Surface Characterization of P-Type Point Contact Germanium Detectors
P-type point contact (PPC) germanium detectors are used in rare event and low-background searches, including neutrinoless double beta (0νββ) decay, low-energy nuclear recoils, and coherent elastic neutrino-nucleus scattering. The detectors feature an excellent energy resolution, low detection thresholds down to the sub-keV range, and enhanced background rejection capabilities. However, due to their large passivated surface, separating the signal readout contact from the bias voltage electrode, PPC detectors are susceptible to surface effects such as charge build-up. A profound understanding of their response to surface events is essential. In this work, the response of a PPC detector to alpha and beta particles hitting the passivated surface was investigated in a multi-purpose scanning test stand. It is shown that the passivated surface can accumulate charges resulting in a radial-dependent degradation of the observed event energy. In addition, it is demonstrated that the pulse shapes of surface alpha events show characteristic features which can be used to discriminate against these events.  more » « less
Award ID(s):
1812374
NSF-PAR ID:
10349790
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Particles
Volume:
4
Issue:
4
ISSN:
2571-712X
Page Range / eLocation ID:
489 to 511
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract P-type point contact (PPC) HPGe detectors are a leading technology for rare event searches due to their excellent energy resolution, low thresholds, and multi-site event rejection capabilities. We have characterized a PPC detector’s response to $$\alpha $$ α particles incident on the sensitive passivated and p $$^+$$ + surfaces, a previously poorly-understood source of background. The detector studied is identical to those in the Majorana Demonstrator experiment, a search for neutrinoless double-beta decay ( $$0\nu \beta \beta $$ 0 ν β β ) in $$^{76}$$ 76 Ge. $$\alpha $$ α decays on most of the passivated surface exhibit significant energy loss due to charge trapping, with waveforms exhibiting a delayed charge recovery (DCR) signature caused by the slow collection of a fraction of the trapped charge. The DCR is found to be complementary to existing methods of $$\alpha $$ α identification, reliably identifying $$\alpha $$ α background events on the passivated surface of the detector. We demonstrate effective rejection of all surface $$\alpha $$ α events (to within statistical uncertainty) with a loss of only 0.2% of bulk events by combining the DCR discriminator with previously-used methods. The DCR discriminator has been used to reduce the background rate in the $$0\nu \beta \beta $$ 0 ν β β region of interest window by an order of magnitude in the Majorana Demonstrator   and will be used in the upcoming LEGEND-200 experiment. 
    more » « less
  2. Abstract IceCube, a cubic-kilometer array of optical sensors built to detect atmospheric and astrophysical neutrinos between 1 GeV and 1 PeV, is deployed 1.45 km to 2.45 km below the surface of the ice sheet at the South Pole. The classification and reconstruction of events from the in-ice detectors play a central role in the analysis of data from IceCube. Reconstructing and classifying events is a challenge due to the irregular detector geometry, inhomogeneous scattering and absorption of light in the ice and, below 100 GeV, the relatively low number of signal photons produced per event. To address this challenge, it is possible to represent IceCube events as point cloud graphs and use a Graph Neural Network (GNN) as the classification and reconstruction method. The GNN is capable of distinguishing neutrino events from cosmic-ray backgrounds, classifying different neutrino event types, and reconstructing the deposited energy, direction and interaction vertex. Based on simulation, we provide a comparison in the 1 GeV–100 GeV energy range to the current state-of-the-art maximum likelihood techniques used in current IceCube analyses, including the effects of known systematic uncertainties. For neutrino event classification, the GNN increases the signal efficiency by 18% at a fixed background rate, compared to current IceCube methods. Alternatively, the GNN offers a reduction of the background (i.e. false positive) rate by over a factor 8 (to below half a percent) at a fixed signal efficiency. For the reconstruction of energy, direction, and interaction vertex, the resolution improves by an average of 13%–20% compared to current maximum likelihood techniques in the energy range of 1 GeV–30 GeV. The GNN, when run on a GPU, is capable of processing IceCube events at a rate nearly double of the median IceCube trigger rate of 2.7 kHz, which opens the possibility of using low energy neutrinos in online searches for transient events. 
    more » « less
  3. Abstract The analysis of the time profile of electrical signals produced by energy depositions in germanium detectors allows discrimination of events with different topologies. This is especially relevant for experiments searching for the neutrinoless double beta decay of $$^{76}$$ 76 Ge to distinguish the sought-after signal from other background sources. The standard calibration procedures used to tune the selection criteria for double-beta decay events use a $$^{228}$$ 228 Th source, because it provides samples of signal-like events. These samples exhibit energy spatial distributions with subtle different topologies compared to neutrinoless double-beta decay events. In this work, we will characterize these topological differences and, with the support of a $$^{56}$$ 56 Co source, evaluate biases and precision of calibration techniques which use such event samples. Our results will be particularly relevant for future experiments in which a solid estimation of the efficiency is required. 
    more » « less
  4. Abstract In the search for a monochromatic peak as the signature of neutrinoless double beta decay an excellent energy resolution and an ultra-low background around the Q -value of the decay are essential. The LEGEND-200 experiment performs such a search with high-purity germanium detectors enriched in 76 Ge immersed in liquid argon. To determine and monitor the stability of the energy scale and resolution of the germanium diodes, custom-made, low-neutron emission 228 Th sources are regularly deployed in the vicinity of the crystals. Here we describe the production process of the 17 sources available for installation in the experiment, the measurements of their alpha- and gamma- activities, as well as the determination of the neutron emission rates with a low-background LiI(Eu) detector operated deep underground. With a flux of ( 4.27 ± 0.60 stat ± 0.92 syst ) × 10 -4  n / (kBq·s), approximately one order of magnitude below that of commercial sources, the neutron-induced background rate, mainly from the activation of 76 Ge, is negligible compared to other background sources in LEGEND-200. 
    more » « less
  5. Abstract Liquid xenon time projection chambers are promising detectors to search for neutrinoless double beta decay (0 $$\nu \beta \beta $$ ν β β ), due to their response uniformity, monolithic sensitive volume, scalability to large target masses, and suitability for extremely low background operations. The nEXO collaboration has designed a tonne-scale time projection chamber that aims to search for 0 $$\nu \beta \beta $$ ν β β of $$^{136}$$ 136 Xe with projected half-life sensitivity of $$1.35\times 10^{28}$$ 1.35 × 10 28  yr. To reach this sensitivity, the design goal for nEXO is $$\le $$ ≤ 1% energy resolution at the decay Q -value ( $$2458.07\pm 0.31$$ 2458.07 ± 0.31  keV). Reaching this resolution requires the efficient collection of both the ionization and scintillation produced in the detector. The nEXO design employs Silicon Photo-Multipliers (SiPMs) to detect the vacuum ultra-violet, 175 nm scintillation light of liquid xenon. This paper reports on the characterization of the newest vacuum ultra-violet sensitive Fondazione Bruno Kessler VUVHD3 SiPMs specifically designed for nEXO, as well as new measurements on new test samples of previously characterised Hamamatsu VUV4 Multi Pixel Photon Counters (MPPCs). Various SiPM and MPPC parameters, such as dark noise, gain, direct crosstalk, correlated avalanches and photon detection efficiency were measured as a function of the applied over voltage and wavelength at liquid xenon temperature (163 K). The results from this study are used to provide updated estimates of the achievable energy resolution at the decay Q -value for the nEXO design. 
    more » « less