Abstract We present the first set of trans-Neptunian objects (TNOs) observed on multiple nights in data taken from the DECam Ecliptic Exploration Project. Of these 110 TNOs, 105 do not coincide with previously known TNOs and appear to be new discoveries. Each individual detection for our objects resulted from a digital tracking search at TNO rates of motion, using two-to-four-hour exposure sets, and the detections were subsequently linked across multiple observing seasons. This procedure allows us to find objects with magnitudesmVR≈ 26. The object discovery processing also included a comprehensive population of objects injected into the images, with a recovery and linking rate of at least 94%. The final orbits were obtained using a specialized orbit-fitting procedure that accounts for the positional errors derived from the digital tracking procedure. Our results include robust orbits and magnitudes for classical TNOs with absolute magnitudesH∼ 10, as well as a dynamically detached object found at 76 au (semimajor axisa≈ 77 au). We find a disagreement between our population of classical TNOs and the CFEPS-L7 three-component model for the Kuiper Belt. 
                        more » 
                        « less   
                    
                            
                            A Search of the Full Six Years of the Dark Energy Survey for Outer Solar System Objects
                        
                    
    
            Abstract We present a search for outer solar system objects in the 6 yr of data from the Dark Energy Survey (DES). The DES covered a contiguous 5000 deg 2 of the southern sky with ≈80,000 3 deg 2 exposures in the grizY filters between 2013 and 2019. This search yielded 812 trans-Neptunian objects (TNOs), one Centaur and one Oort cloud comet, 458 reported here for the first time. We present methodology that builds upon our previous search on the first 4 yr of data. All images were reprocessed with an optimized detection pipeline that leads to an average completeness gain of 0.47 mag per exposure, as well as improved transient catalog production and algorithms for linkage of detections into orbits. All objects were verified by visual inspection and by the “sub-threshold significance,” the signal-to-noise ratio in the stack of images in which its presence is indicated by the orbit, but no detection was reported. This yields a pure catalog complete to r ≈ 23.8 mag and distances 29 < d < 2500 au. The TNOs have minimum (median) of 7 (12) nights’ detections and arcs of 1.1 (4.2) yr, and will have grizY magnitudes available in a further publication. We present software for simulating our observational biases for comparisons of models to our detections. Initial inferences demonstrating the catalog’s statistical power are: the data are inconsistent with the CFEPS-L7 model for the classical Kuiper Belt; the 16 “extreme” TNOs ( a > 150 au, q > 30 au) are consistent with the null hypothesis of azimuthal isotropy; and nonresonant TNOs with q > 38 au, a > 50 au show a significant tendency to be sunward of major mean-motion resonances. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2009210
- PAR ID:
- 10349843
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- The Astrophysical Journal Supplement Series
- Volume:
- 258
- Issue:
- 2
- ISSN:
- 0067-0049
- Page Range / eLocation ID:
- 41
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            ABSTRACT We describe the Dark Energy Survey (DES) Deep Fields, a set of images and associated multiwavelength catalogue (ugrizJHKs) built from Dark Energy Camera (DECam) and Visible and Infrared Survey Telescope for Astronomy (VISTA) data. The DES Deep Fields comprise 11 fields (10 DES supernova fields plus COSMOS), with a total area of ∼30 sq. deg. in ugriz bands and reaching a maximum i-band depth of 26.75 (AB, 10σ, 2 arcsec). We present a catalogue for the DES 3-yr cosmology analysis of those four fields with full 8-band coverage, totalling 5.88 sq. deg. after masking. Numbering 2.8 million objects (1.6 million post-masking), our catalogue is drawn from images coadded to consistent depths of r = 25.7, i = 25, and z = 24.3 mag. We use a new model-fitting code, built upon established methods, to deblend sources and ensure consistent colours across the u-band to Ks-band wavelength range. We further detail the tight control we maintain over the point-spread function modelling required for the model fitting, astrometry and consistency of photometry between the four fields. The catalogue allows us to perform a careful star–galaxy separation and produces excellent photometric redshift performance (NMAD = 0.023 at i < 23). The Deep-Fields catalogue will be made available as part of the cosmology data products release, following the completion of the DES 3-yr weak lensing and galaxy clustering cosmology work.more » « less
- 
            Abstract We report the methods of and initial scientific inferences from the extraction of precision photometric information for the >800 trans-Neptunian objects (TNOs) discovered in the images of the Dark Energy Survey (DES). Scene-modeling photometry is used to obtain shot-noise-limited flux measures for each exposure of each TNO, with background sources subtracted. Comparison of double-source fits to the pixel data with single-source fits are used to identify and characterize two binary TNO systems. A Markov Chain Monte Carlo method samples the joint likelihood of the intrinsic colors of each source as well as the amplitude of its flux variation, given the time series of multiband flux measurements and their uncertainties. A catalog of these colors and light-curve amplitudesAis included with this publication. We show how to assign a likelihood to the distributionq(A) of light-curve amplitudes in any subpopulation. Using this method, we find decisive evidence (i.e., evidence ratio <0.01) that cold classical (CC) TNOs with absolute magnitude 6 <Hr< 8.2 are more variable than the hot classical (HC) population of the sameHr, reinforcing theories that the former form in situ and the latter arise from a different physical population. Resonant and scattering TNOs in thisHrrange have variability consistent with either the HCs or CCs. DES TNOs withHr< 6 are seen to be decisively less variable than higher-Hrmembers of any dynamical group, as expected. More surprising is that detached TNOs are decisively less variable than scattering TNOs, which requires them to have distinct source regions or some subsequent differential processing.more » « less
- 
            Abstract The detached trans-Neptunian objects (TNOs) are those with semimajor axes beyond the 2:1 resonance with Neptune that are neither resonant nor scattering. Using the detached sample from the Outer Solar System Origins Survey (OSSOS) telescopic survey, we produce the first studies of their orbital distribution based on matching the orbits and numbers of the known TNOs after accounting for survey biases. We show that the detached TNO perihelion ( q ) distribution cannot be uniform but is instead better matched by two uniform components with a break near q ≈ 40 au. We produce parametric two-component models that are not rejectable by the OSSOS data set and estimate that there are 36,000 − 9000 + 12 , 000 detached TNOs with absolute magnitudes H r < 8.66 ( D ≳ 100 km) and semimajor axes 48 au < a < 250 au (95% confidence limits). Although we believe that these heuristic two-parameter models yield a correct population estimate, we then use the same methods to show that the perihelion distribution of a detached disk created by a simulated rogue planet matches the q distribution even better, suggesting that the temporary presence of other planets in the early solar system is a promising model to create today’s large semimajor axis TNO population. This cosmogonic simulation results in a detached TNO population estimate of 48,000 − 12 , 000 + 15 , 000 . Because this illustrates how difficult-to-detect q > 50 au objects are likely present, we conclude that there are (5 ± 2) × 10 4 dynamically detached TNOs, roughly twice as many as in the entire trans-Neptunian hot main belt.more » « less
- 
            null (Ed.)Abstract We present morphological classifications of ∼27 million galaxies from the Dark Energy Survey (DES) Data Release 1 (DR1) using a supervised deep learning algorithm. The classification scheme separates: (a) early-type galaxies (ETGs) from late-types (LTGs), and (b) face-on galaxies from edge-on. Our Convolutional Neural Networks (CNNs) are trained on a small subset of DES objects with previously known classifications. These typically have mr ≲ 17.7mag; we model fainter objects to mr < 21.5 mag by simulating what the brighter objects with well determined classifications would look like if they were at higher redshifts. The CNNs reach 97% accuracy to mr < 21.5 on their training sets, suggesting that they are able to recover features more accurately than the human eye. We then used the trained CNNs to classify the vast majority of the other DES images. The final catalog comprises five independent CNN predictions for each classification scheme, helping to determine if the CNN predictions are robust or not. We obtain secure classifications for ∼ 87% and 73% of the catalog for the ETG vs. LTG and edge-on vs. face-on models, respectively. Combining the two classifications (a) and (b) helps to increase the purity of the ETG sample and to identify edge-on lenticular galaxies (as ETGs with high ellipticity). Where a comparison is possible, our classifications correlate very well with Sérsic index (n), ellipticity (ε) and spectral type, even for the fainter galaxies. This is the largest multi-band catalog of automated galaxy morphologies to date.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    