skip to main content

This content will become publicly available on February 1, 2023

Title: A Search of the Full Six Years of the Dark Energy Survey for Outer Solar System Objects
Abstract We present a search for outer solar system objects in the 6 yr of data from the Dark Energy Survey (DES). The DES covered a contiguous 5000 deg 2 of the southern sky with ≈80,000 3 deg 2 exposures in the grizY filters between 2013 and 2019. This search yielded 812 trans-Neptunian objects (TNOs), one Centaur and one Oort cloud comet, 458 reported here for the first time. We present methodology that builds upon our previous search on the first 4 yr of data. All images were reprocessed with an optimized detection pipeline that leads to an average completeness gain of 0.47 mag per exposure, as well as improved transient catalog production and algorithms for linkage of detections into orbits. All objects were verified by visual inspection and by the “sub-threshold significance,” the signal-to-noise ratio in the stack of images in which its presence is indicated by the orbit, but no detection was reported. This yields a pure catalog complete to r ≈ 23.8 mag and distances 29 < d < 2500 au. The TNOs have minimum (median) of 7 (12) nights’ detections and arcs of 1.1 (4.2) yr, and will have grizY magnitudes available in a further publication. more » We present software for simulating our observational biases for comparisons of models to our detections. Initial inferences demonstrating the catalog’s statistical power are: the data are inconsistent with the CFEPS-L7 model for the classical Kuiper Belt; the 16 “extreme” TNOs ( a > 150 au, q > 30 au) are consistent with the null hypothesis of azimuthal isotropy; and nonresonant TNOs with q > 38 au, a > 50 au show a significant tendency to be sunward of major mean-motion resonances. « less
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Award ID(s):
2009210
Publication Date:
NSF-PAR ID:
10349843
Journal Name:
The Astrophysical Journal Supplement Series
Volume:
258
Issue:
2
Page Range or eLocation-ID:
41
ISSN:
0067-0049
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We describe the Dark Energy Survey (DES) Deep Fields, a set of images and associated multiwavelength catalogue (ugrizJHKs) built from Dark Energy Camera (DECam) and Visible and Infrared Survey Telescope for Astronomy (VISTA) data. The DES Deep Fields comprise 11 fields (10 DES supernova fields plus COSMOS), with a total area of ∼30 sq. deg. in ugriz bands and reaching a maximum i-band depth of 26.75 (AB, 10σ, 2 arcsec). We present a catalogue for the DES 3-yr cosmology analysis of those four fields with full 8-band coverage, totalling 5.88 sq. deg. after masking. Numbering 2.8 million objects (1.6 million post-masking), our catalogue is drawn from images coadded to consistent depths of r = 25.7, i = 25, and z = 24.3 mag. We use a new model-fitting code, built upon established methods, to deblend sources and ensure consistent colours across the u-band to Ks-band wavelength range. We further detail the tight control we maintain over the point-spread function modelling required for the model fitting, astrometry and consistency of photometry between the four fields. The catalogue allows us to perform a careful star–galaxy separation and produces excellent photometric redshift performance (NMAD = 0.023 at i < 23). The Deep-Fields catalogue will be made available asmore »part of the cosmology data products release, following the completion of the DES 3-yr weak lensing and galaxy clustering cosmology work.« less
  2. Abstract

    We present the first results of a multiyear program to map the orbits of M-dwarf multiples within 25 pc. The observations were conducted primarily during 2019–2020 using speckle interferometry at the Southern Astrophysical Research Telescope in Chile, using the High-Resolution Camera mounted on the adaptive optics module (HRCam+SAM). The sample of nearby M dwarfs is drawn from three sources: multiples from the RECONS long-term astrometric monitoring program at the SMARTS 0.9 m; known multiples, for which these new observations will enable or improve orbit fits; and candidate multiples flagged by their astrometric fits in Gaia Data Release 2 (DR2). We surveyed 333 of our 338 M dwarfs via 830 speckle observations, detecting companions for 63% of the stars. Most notably, this includes new companions for 76% of the subset selected from Gaia DR2. In all, we report the first direct detections of 97 new stellar companions to the observed M dwarfs. Here we present the properties of those detections, the limits of each nondetection, and five orbits with periods 0.67–29 yr already observed as part of this program. Companions detected have projected separations of 0.″024–2.″0 (0.25–66 au) from their primaries and have ΔI≲ 5.0 mag. This multiyear campaign willmore »ultimately map complete orbits for nearby M dwarfs with periods up to 3 yr, and provide key epochs to stretch orbital determinations for binaries to 30 yr.

    « less
  3. Abstract We present morphological classifications of ∼27 million galaxies from the Dark Energy Survey (DES) Data Release 1 (DR1) using a supervised deep learning algorithm. The classification scheme separates: (a) early-type galaxies (ETGs) from late-types (LTGs), and (b) face-on galaxies from edge-on. Our Convolutional Neural Networks (CNNs) are trained on a small subset of DES objects with previously known classifications. These typically have mr ≲ 17.7mag; we model fainter objects to mr < 21.5 mag by simulating what the brighter objects with well determined classifications would look like if they were at higher redshifts. The CNNs reach 97% accuracy to mr < 21.5 on their training sets, suggesting that they are able to recover features more accurately than the human eye. We then used the trained CNNs to classify the vast majority of the other DES images. The final catalog comprises five independent CNN predictions for each classification scheme, helping to determine if the CNN predictions are robust or not. We obtain secure classifications for ∼ 87% and 73% of the catalog for the ETG vs. LTG and edge-on vs. face-on models, respectively. Combining the two classifications (a) and (b) helps to increase the purity of the ETG sample andmore »to identify edge-on lenticular galaxies (as ETGs with high ellipticity). Where a comparison is possible, our classifications correlate very well with Sérsic index (n), ellipticity (ε) and spectral type, even for the fainter galaxies. This is the largest multi-band catalog of automated galaxy morphologies to date.« less
  4. Abstract

    Discovered in 2011 with LOFAR, the 15 Jy low-frequency radio transient ILT J225347+862146 heralds a potentially prolific population of radio transients at <100 MHz. However, subsequent transient searches in similar parameter space yielded no detections. We test the hypothesis that these surveys at comparable sensitivity have missed the population due to mismatched survey parameters. In particular, the LOFAR survey used only 195 kHz of bandwidth at 60 MHz, while other surveys were at higher frequencies or had wider bandwidth. Using 137 hr of all-sky images from the Owens Valley Radio Observatory Long Wavelength Array, we conduct a narrowband transient search at ∼10 Jy sensitivity with timescales from 10 minutes to 1 day and a bandwidth of 722 kHz at 60 MHz. To model the remaining survey selection effects, we introduce a flexible Bayesian approach for inferring transient rates. We do not detect any transient and find compelling evidence that our nondetection is inconsistent with the detection of ILT J225347+862146. Under the assumption that the transient is astrophysical, we propose two hypotheses that may explain our nondetection. First, the transient population associated with ILT J225347+862146 may have a low all-sky density and display strong temporal clustering. Second, ILT J225347+862146 maymore »be an extreme instance of the fluence distribution, of which we revise the surface density estimate at 15 Jy to 1.1 × 10−7deg−2with a 95% credible interval of (3.5 × 10−12, 3.4 × 10−7) deg−2. Finally, we find a previously identified object coincident with ILT J225347+862146 to be an M dwarf at 420 pc.

    « less
  5. Abstract Despite extensive searches and the relative proximity of solar system objects (SSOs) to Earth, many remain undiscovered and there is still much to learn about their properties and interactions. This work is the first in a series dedicated to detecting and analyzing SSOs in the all-sky NOIRLab Source Catalog (NSC). We search the first data release of the NSC with CANFind, a Computationally Automated NSC tracklet Finder. NSC DR1 contains 34 billion measurements of 2.9 billion unique objects, which CANFind categorizes as belonging to “stationary” (distant stars, galaxies) or moving (SSOs) objects via an iterative clustering method. Detections of stationary bodies for proper-motion μ ≤ 2.″5 hr −1 (0.°017 day −1 ) are identified and analyzed separately. Remaining detections belonging to high- μ objects are clustered together over single nights to form “tracklets.” Each tracklet contains detections of an individual moving object, and is validated based on spatial linearity and motion through time. Proper motions are then calculated and used to connect tracklets and other unassociated measurements over multiple nights by predicting their locations at common times, forming “tracks.” This method extracted 527,055 tracklets from NSC DR1 in an area covering 29,971 square degrees of the sky. The datamore »show distinct groups of objects with similar observed μ in ecliptic coordinates, namely Main Belt Asteroids, Jupiter Trojans, and Kuiper Belt Objects. Apparent magnitudes range from 10 to 25 mag in the ugrizY and VR bands. Color–color diagrams show a bimodality of tracklets between primarily carbonaceous and siliceous groups, supporting prior studies.« less