This content will become publicly available on February 11, 2023
 Authors:
 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
 Award ID(s):
 2009210
 Publication Date:
 NSFPAR ID:
 10349853
 Journal Name:
 Monthly Notices of the Royal Astronomical Society
 Volume:
 511
 Issue:
 2
 Page Range or eLocationID:
 2170 to 2185
 ISSN:
 00358711
 Sponsoring Org:
 National Science Foundation
More Like this

ABSTRACT Photometric galaxy surveys constitute a powerful cosmological probe but rely on the accurate characterization of their redshift distributions using only broadband imaging, and can be very sensitive to incomplete or biased priors used for redshift calibration. A hierarchical Bayesian model has recently been developed to estimate those from the robust combination of prior information, photometry of single galaxies, and the information contained in the galaxy clustering against a wellcharacterized tracer population. In this work, we extend the method so that it can be applied to real data, developing some necessary new extensions to it, especially in the treatment of galaxy clustering information, and we test it on realistic simulations. After marginalizing over the mapping between the clustering estimator and the actual density distribution of the sample galaxies, and using prior information from a small patch of the survey, we find the incorporation of clustering information with photoz’s tightens the redshift posteriors and overcomes biases in the prior that mimic those happening in spectroscopic samples. The method presented here uses all the information at hand to reduce prior biases and incompleteness. Even in cases where we artificially bias the spectroscopic sample to induce a shift in mean redshift of $\Deltamore »

ABSTRACT Determining the distribution of redshifts of galaxies observed by widefield photometric experiments like the Dark Energy Survey (DES) is an essential component to mapping the matter density field with gravitational lensing. In this work we describe the methods used to assign individual weak lensing source galaxies from the DES Year 3 Weak Lensing Source Catalogue to four tomographic bins and to estimate the redshift distributions in these bins. As the first application of these methods to data, we validate that the assumptions made apply to the DES Y3 weak lensing source galaxies and develop a full treatment of systematic uncertainties. Our method consists of combining information from three independent likelihood functions: selforganizing map p(z) (sompz), a method for constraining redshifts from galaxy photometry; clustering redshifts (WZ), constraints on redshifts from crosscorrelations of galaxy density functions; and shear ratios (SRs), which provide constraints on redshifts from the ratios of the galaxyshear correlation functions at small scales. Finally, we describe how these independent probes are combined to yield an ensemble of redshift distributions encapsulating our full uncertainty. We calibrate redshifts with combined effective uncertainties of σ〈z〉 ∼ 0.01 on the mean redshift in each tomographic bin.

ABSTRACT We present cosmological parameter constraints based on a joint modelling of galaxy–lensing crosscorrelations and galaxy clustering measurements in the SDSS, marginalizing over smallscale modelling uncertainties using mock galaxy catalogues, without explicit modelling of galaxy bias. We show that our modelling method is robust to the impact of different choices for how galaxies occupy dark matter haloes and to the impact of baryonic physics (at the $\sim 2{{\ \rm per\ cent}}$ level in cosmological parameters) and test for the impact of covariance on the likelihood analysis and of the survey window function on the theory computations. Applying our results to the measurements using galaxy samples from BOSS and lensing measurements using shear from SDSS galaxies and CMB lensing from Planck, with conservative scale cuts, we obtain $S_8\equiv \left(\frac{\sigma _8}{0.8228}\right)^{0.8}\left(\frac{\Omega _\mathrm{ m}}{0.307}\right)^{0.6}=0.85\pm 0.05$ (stat.) using LOWZ × SDSS galaxy lensing, and S8 = 0.91 ± 0.1 (stat.) using combination of LOWZ and CMASS × Planck CMB lensing. We estimate the systematic uncertainty in the galaxy–galaxy lensing measurements to be $\sim 6{{\ \rm per\ cent}}$ (dominated by photometric redshift uncertainties) and in the galaxy–CMB lensing measurements to be $\sim 3{{\ \rm per\ cent}}$, from smallscale modelling uncertainties including baryonic physics.

ABSTRACT The combination of galaxy–galaxy lensing (GGL) and galaxy clustering is a powerful probe of lowredshift matter clustering, especially if it is extended to the nonlinear regime. To this end, we use an Nbody and halo occupation distribution (HOD) emulator method to model the redMaGiC sample of colourselected passive galaxies in the Dark Energy Survey (DES), adding parameters that describe central galaxy incompleteness, galaxy assembly bias, and a scaleindependent multiplicative lensing bias Alens. We use this emulator to forecast cosmological constraints attainable from the GGL surface density profile ΔΣ(rp) and the projected galaxy correlation function wp, gg(rp) in the final (Year 6) DES data set over scales $r_p=0.3\!\!30.0\, h^{1} \, \mathrm{Mpc}$. For a $3{{\ \rm per\ cent}}$ prior on Alens we forecast precisions of $1.9{{\ \rm per\ cent}}$, $2.0{{\ \rm per\ cent}}$, and $1.9{{\ \rm per\ cent}}$ on Ωm, σ8, and $S_8 \equiv \sigma _8\Omega _m^{0.5}$, marginalized over all halo occupation distribution (HOD) parameters as well as Alens. Adding scales $r_p=0.3\!\!3.0\, h^{1} \, \mathrm{Mpc}$ improves the S8 precision by a factor of ∼1.6 relative to a large scale ($3.0\!\!30.0\, h^{1} \, \mathrm{Mpc}$) analysis, equivalent to increasing the survey area by a factor of ∼2.6. Sharpening the Alens prior to $1{{\more »

ABSTRACT We present the calibration of the Dark Energy Survey Year 3 (DES Y3) weak lensing (WL) source galaxy redshift distributions n(z) from clustering measurements. In particular, we crosscorrelate the WL source galaxies sample with redMaGiC galaxies (luminous red galaxies with secure photometric redshifts) and a spectroscopic sample from BOSS/eBOSS to estimate the redshift distribution of the DES sources sample. Two distinct methods for using the clustering statistics are described. The first uses the clustering information independently to estimate the mean redshift of the source galaxies within a redshift window, as done in the DES Y1 analysis. The second method establishes a likelihood of the clustering data as a function of n(z), which can be incorporated into schemes for generating samples of n(z) subject to combined clustering and photometric constraints. Both methods incorporate marginalization over various astrophysical systematics, including magnification and redshiftdependent galaxymatter bias. We characterize the uncertainties of the methods in simulations; the first method recovers the mean z of tomographic bins to RMS (precision) of ∼0.014. Use of the second method is shown to vastly improve the accuracy of the shape of n(z) derived from photometric data. The two methods are then applied to the DES Y3 data.