skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Geographic and temporal morphological stasis in the latest Cretaceous ammonoid Discoscaphites iris from the U.S. Gulf and Atlantic Coastal Plains
Abstract We examine temporal and spatial variation in morphology of the ammonoid cephalopod Discoscaphites iris using a large dataset from multiple localities in the Late Cretaceous (Maastrichtian) of the U.S. Gulf and Atlantic Coastal Plains, spanning a distance of 2000 km along the paleoshoreline. Our results suggest that the fossil record of D. iris is consistent with no within-species net accumulation of phyletic evolutionary change across morphological traits or the lifetime of this species. Correlations between some traits and paleoenvironmental conditions as well as changes in the coefficient of variation may support limited population-scale ecophenotypic plasticity; however, where stratigraphic data are available, no directional changes in morphology occur before the Cretaceous/Paleogene (K/Pg) boundary. This is consistent with models of “dynamic” evolutionary stasis. Combined with knowledge of life-history traits and paleoecology of scaphitid ammonoids, specifically a short planktonic phase after hatching followed by transition to a nektobenthic adult stage, these data suggest that scaphitids had significant potential for rapid morphological change in conjunction with limited dispersal capacity. It is therefore likely that evolutionary mode in the Scaphitidae (and potentially across the broader ammonoid clade) follows a model of cladogenesis wherein a dynamic morphological stasis is periodically interrupted by more substantial evolutionary change at speciation events. Finally, the lack of temporal changes in our data suggest that global environmental changes had a limited effect on the morphology of ammonoid faunas during the latest Cretaceous.  more » « less
Award ID(s):
1924807
PAR ID:
10349856
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Paleobiology
ISSN:
0094-8373
Page Range / eLocation ID:
1 to 23
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Global climatic fluctuation has significantly impacted biodiversity by shaping adaptations across numerous species. Pleistocene climate changes notably affected species’ geographic distributions and population sizes, especially fostering post-glacial expansions in temperate regions. Evolutionary theory suggests spatial sorting of morphological traits associated with dispersal in recently expanded species. However, evidence of predicted intraspecific trait variation is scant. We investigated intraspecific trait variation in five lizard species along a forest-savanna gradient affected by Pleistocene climate. Lizards serve as an ideal group to test these ideas due to climate’s known influence on their morphological traits linked to essential functions like feeding and locomotion. We assessed two hypotheses: (i) niche variation and (ii) spatial sorting. For the niche variation hypothesis, we predicted increased intraspecific variability in head dimensions with distance from stable areas. For spatial sorting, we anticipated larger hind limb sizes with increased distance from stable areas. We gathered data on five quantitative traits from 663 samples across species. There was no evidence supporting either hypothesis across the five species. Limited sample sizes, challenges in habitat modeling, or other factors might explain this lack of support. Nonetheless, our study illuminates complexities in exploring trait variation within species. The data collected here, although inconclusive, represent a crucial test for evolutionary theory. 
    more » « less
  2. Abstract The rapid pace of contemporary environmental change puts many species at risk, especially rare species constrained by limited capacity to adapt or migrate due to low genetic diversity and/or fitness. But the ability to acclimate can provide another way to persist through change. We compared the capacity of rareBoechera perstellata(Braun's rockcress) and widespreadB. laevigatato acclimate to change. We investigated the phenotypic plasticity of growth, biomass allocation, and leaf morphology of individuals ofB. perstellataandB. laevigatapropagated from seed collected from several populations throughout their ranges in a growth chamber experiment to assess their capacity to acclimate. Concurrently, we assessed the genetic diversity of sampled populations using 17 microsatellite loci to assess evolutionary potential. Plasticity was limited in both rareB. perstellataand widespreadB. laevigata, but differences in the plasticity of root traits between species suggest thatB. perstellatamay have less capacity to acclimate to change. In contrast to its widespread congener,B. perstellataexhibited no plasticity in response to temperature and weaker plastic responses to water availability. As expected,B. perstellataalso had lower levels of observed heterozygosity thanB. laevigataat the species level, but population‐level trends in diversity measures were inconsistent due to high heterogeneity amongB. laevigatapopulations. Overall, the ability of phenotypic plasticity to broadly explain the rarity ofB. perstellataversus commonness ofB. laevigatais limited. However, some contextual aspects of our plasticity findings compared with its relatively low genetic variability may shed light on the narrow range and habitat associations ofB. perstellataand suggest its vulnerability to climate warming due to acclimatory and evolutionary constraints. 
    more » « less
  3. Abstract Insights into assemblages that can persist in extreme environments are still emerging. Ocean warming and acidification select against species with low physiological tolerance (trait‐based ‘filtering’). However, intraspecific trait variation can promote species adaptation and persistence, with potentially large effects on assemblage structure. By sampling nine coral traits (four morphological, four tissue and one skeletal) along an offshore–inshore gradient in temperature and pH, we show that distantly related coral species undergo consistent intraspecific changes as they cross into warm, acidic environments. Intraspecific variation and species turnover each favoured colonies with greater tissue biomass, higher symbiont densities and reduced skeletal investments, indicating strong filtering on colony physiology within and across species. Physiological tissue traits were highly variable within species and were independent of morphology, enabling morphologically diverse species to cross into sites of elevated temperature and acidity. Widespread intraspecific change can therefore counter the loss of biodiversity and morphological structure across a steep environmental gradient. 
    more » « less
  4. For the past several centuries, millipede taxonomists have used the morphology of male copulatory structures (modified legs called gonopods), which are strongly variable and suggestive of species-level differences, as a source to understand taxon relationships. Millipedes in the family Xystodesmidae are blind, dispersal-limited and have narrow habitat requirements. Therefore, geographical proximity may instead be a better predictor of evolutionary relationship than morphology, especially since gonopodal anatomy is extremely divergent and similarities may be masked by evolutionary convergence. Here we provide a phylogenetics-based test of the power of morphological versus geographical character sets for resolving phylogenetic relationships in xystodesmid millipedes. Molecular data from 90 species-group taxa in the family were included in a six-gene phylogenetic analysis to provide the basis for comparing trees generated from these alternative character sets. The molecular phylogeny was compared to topologies representing three hypotheses: (1) a prior classification formulated using morphological and geographical data, (2) hierarchical groupings derived from Euclidean geographical distance, and (3) one based solely on morphological data. Euclidean geographical distance was not found to be a better predictor of evolutionary relationship than the prior classification, the latter of which was the most similar to the molecular topology. However, all three of the alternative topologies were highly divergent (Bayes factor >10) from the molecular topology, with the tree inferred exclusively from morphology being the most divergent. The results of this analysis show that a high degree of morphological convergence from substantial gonopod shape divergence generated spurious phylogenetic relationships. These results indicate the impact that a high degree of morphological homoplasy may have had on prior treatments of the family. Using the results of our phylogenetic analysis, we make several changes to the classification of the family, including transferring the rare state-threatened species Sigmoria whiteheadi Shelley, 1986 to the genus Apheloria Chamberlin, 1921—a relationship not readily apparent based on morphology alone. We show that while gonopod differences are a premier source of taxonomic characters to diagnose species pairwise, the traits should be viewed critically as taxonomic features uniting higher levels. 
    more » « less
  5. The prevalence of stasis on macroevolution has been classically taken as evidence of the strong role of stabilizing selection in constraining morphological change. Rates of evolution calculated over longer timescales tend to fall below the expected under genetic drift, suggesting that directional selection signals are erased at longer timescales. Here, we investigated the rates of morphological evolution of the skull in a fossil lineage that underwent extreme morphological modification, the glyptodonts. Contrary to what was expected, we show here that directional selection was the primary process during the evolution of glyptodonts. Furthermore, the reconstruction of selection patterns shows that traits selected to generate a glyptodont morphology are markedly different from those operating on extant armadillos. Changes in both direction and magnitude of selection are probably tied to glyptodonts' invasion of a specialist-herbivore adaptive zone. These results suggest that directional selection might have played a more critical role in the evolution of extreme morphologies than previously imagined. 
    more » « less