skip to main content


Search for: All records

Award ID contains: 1924807

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Understanding the mechanism of selective extinction is important in predicting the impact of anthropogenic environmental changes on current ecosystems. The selective extinction of externally shelled cephalopods at the Cretaceous-Paleogene (K-Pg) mass extinction event (ammonoids versus nautiloids) is often studied, but its mechanism is still debated. We investigate the differences in metabolic rate between these two groups to further explore the causes of selective extinction. We use a novel metabolic proxy—the fraction of metabolic carbon in the stable carbon isotope ratio of shell material (Cmeta)—to determine metabolic rate. Using this approach, we document significant differences in Cmeta among modern cephalopod taxa (Nautilus spp., Argonauta argo, Dosidicus gigas, Sepia officinalis, and Spirula spirula). Our results are consistent with estimates based on oxygen consumption, suggesting that this proxy is a reliable indicator of metabolic rate. We then use this approach to determine the metabolic rates of ammonoids and nautiloids that lived at the end of the Cretaceous (Maastrichtian). Our results show that the nautiloid Eutrephoceras, which survived the K-Pg mass extinction event, possessed a lower metabolic rate than co-occurring ammonoids (Baculites, Eubaculites, Discoscaphites, and Hoploscaphites). We conclude that the lower metabolic rate in nautiloids was an advantage during a time of environmental deterioration (surface-water acidification and resulting decrease in plankton) following the Chicxulub asteroid impact.

     
    more » « less
    Free, publicly-accessible full text available April 25, 2024
  2. Abstract The Western Interior Seaway (WIS) was historically divided into latitudinal faunal provinces that were taxonomically distinct from the adjacent Gulf Coastal Plain (GCP) and that shifted in space due to sea-level changes. However, no rigorous quantitative analyses using recent taxonomic updates have reassessed these provinces and their associations. We used network modeling of macroinvertebrate WIS and GCP fauna to test whether biotic provinces existed and to examine their relationships with abiotic change. Results suggest a cohesive WIS unit existed across the Campanian, and distinct WIS and GCP provinces existed in the Maastrichtian. Sea-level changes coincided with changes in network metrics. These results indicate that, while the WIS did not contain subprovinces in the Late Cretaceous, environmental factors influenced faunal associations and their communication over time. 
    more » « less
    Free, publicly-accessible full text available June 28, 2024
  3. Abstract We examine temporal and spatial variation in morphology of the ammonoid cephalopod Discoscaphites iris using a large dataset from multiple localities in the Late Cretaceous (Maastrichtian) of the U.S. Gulf and Atlantic Coastal Plains, spanning a distance of 2000 km along the paleoshoreline. Our results suggest that the fossil record of D. iris is consistent with no within-species net accumulation of phyletic evolutionary change across morphological traits or the lifetime of this species. Correlations between some traits and paleoenvironmental conditions as well as changes in the coefficient of variation may support limited population-scale ecophenotypic plasticity; however, where stratigraphic data are available, no directional changes in morphology occur before the Cretaceous/Paleogene (K/Pg) boundary. This is consistent with models of “dynamic” evolutionary stasis. Combined with knowledge of life-history traits and paleoecology of scaphitid ammonoids, specifically a short planktonic phase after hatching followed by transition to a nektobenthic adult stage, these data suggest that scaphitids had significant potential for rapid morphological change in conjunction with limited dispersal capacity. It is therefore likely that evolutionary mode in the Scaphitidae (and potentially across the broader ammonoid clade) follows a model of cladogenesis wherein a dynamic morphological stasis is periodically interrupted by more substantial evolutionary change at speciation events. Finally, the lack of temporal changes in our data suggest that global environmental changes had a limited effect on the morphology of ammonoid faunas during the latest Cretaceous. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. Mass extinction at the Cretaceous–Paleogene (K-Pg) boundary coin- cides with the Chicxulub bolide impact and also falls within the broader time frame of Deccan trap emplacement. Critically, though, empirical evidence as to how either of these factors could have driven observed extinction patterns and carbon cycle perturbations is still lacking. Here, using boron isotopes in foraminifera, we docu- ment a geologically rapid surface-ocean pH drop following the Chicxulub impact, supporting impact-induced ocean acidification as a mechanism for ecological collapse in the marine realm. Subsequently, surface water pH rebounded sharply with the extinction of marine calcifiers and the associated imbalance in the global carbon cycle. Our reconstructed water-column pH gradients, combined with Earth sys- tem modeling, indicate that a partial ∼50% reduction in global ma- rine primary productivity is sufficient to explain observed marine carbon isotope patterns at the K-Pg, due to the underlying action of the solubility pump. While primary productivity recovered within a few tens of thousands of years, inefficiency in carbon export to the deep sea lasted much longer. This phased recovery scenario recon- ciles competing hypotheses previously put forward to explain the K-Pg carbon isotope records, and explains both spatially variable patterns of change in marine productivity across the event and a lack of extinction at the deep sea floor. In sum, we provide insights into the drivers of the last mass extinction, the recovery of marine carbon cycling in a postextinction world, and the way in which ma- rine life imprints its isotopic signal onto the geological record. 
    more » « less