skip to main content


Title: On the approximation of vorticity fronts by the Burgers–Hilbert equation
This paper proves that the motion of small-slope vorticity fronts in the two-dimensional incompressible Euler equations is approximated on cubically nonlinear timescales by a Burgers–Hilbert equation derived by Biello and Hunter (2010) using formal asymptotic expansions. The proof uses a modified energy method to show that the contour dynamics equations for vorticity fronts in the Euler equations and the Burgers–Hilbert equation are both approximated by the same cubically nonlinear asymptotic equation. The contour dynamics equations for Euler vorticity fronts are also derived.  more » « less
Award ID(s):
1928930 1908947
NSF-PAR ID:
10349877
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Asymptotic Analysis
Volume:
129
Issue:
2
ISSN:
0921-7134
Page Range / eLocation ID:
141 to 177
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The present work uses a reduced-order model to study the motion of a buoyant vortex ring with non-negligible core size. Buoyancy is considered in both non-Boussinesq and Boussinesq situations using an axisymmetric contour dynamics formulation. The density of the vortex ring differs from that of the ambient fluid, and both densities are constant and conserved. The motion of the ring is calculated by following the boundary of the vortex core, which is also the interface between the two densities. The velocity of the contour comes from a combination of a specific continuous vorticity distribution within its core and a vortex sheet on the core boundary. An evolution equation for the vortex sheet is derived from the Euler equation, which simplifies considerably in the Boussinesq limit. Numerical solutions for the coupled integro-differential equations are obtained. The dynamics of the vortex sheet and the formation of two possible singularities, including singularities in the curvature and the shock-like profile of the vortex sheet strength, are discussed. Three dimensionless groups, the Atwood, Froude and Weber numbers, are introduced to measure the importance of physical effects acting on the motion of a buoyant vortex ring. 
    more » « less
  2. We consider the time evolution in two spatial dimensions of a double vorticity layer consisting of two contiguous, infinite material fluid strips, each with uniform but generally differing vorticity, embedded in an otherwise infinite, irrotational, inviscid incompressible fluid. The potential application is to the wake dynamics formed by two boundary layers separating from a splitter plate. A thin-layer approximation is constructed where each layer thickness, measured normal to the common centre curve, is small in comparison with the local radius of curvature of the centre curve. The three-curve equations of contour dynamics that fully describe the double-layer dynamics are expanded in the small thickness parameter. At leading order, closed nonlinear initial-value evolution equations are obtained that describe the motion of the centre curve together with the time and spatial variation of each layer thickness. In the special case where the layer vorticities are equal, these equations reduce to the single-layer equation of Moore ( Stud. Appl. Math. , vol. 58, 1978, pp. 119–140). Analysis of the linear stability of the first-order equations to small-amplitude perturbations shows Kelvin–Helmholtz instability when the far-field fluid velocities on either side of the double layer are unequal. Equal velocities define a circulation-free double vorticity layer, for which solution of the initial-value problem using the Laplace transform reveals a double pole in transform space leading to linear algebraic growth in general, but there is a class of interesting initial conditions with no linear growth. This is shown to agree with the long-wavelength limit of the full linearized, three-curve stability equations. 
    more » « less
  3. Mathematical analysis of the well known model of a piezoelectric energy harvester is presented. The harvester is designed as a cantilever Timoshenko beam with piezoelectric layers attached to its top and bottom faces. Thin, perfectly conductive electrodes are covering the top and bottom faces of the piezoelectric layers. These electrodes are connected to a resistive load. The model is governed by a system of three partial differential equations. The first two of them are the equations of the Timoshenko beam model and the third one represents Kirchhoff’s law for the electric circuit. All equations are coupled due to the piezoelectric effect. We represent the system as a single operator evolution equation in the Hilbert state space of the system. The dynamics generator of this evolution equation is a non-selfadjoint matrix differential operator with compact resolvent. The paper has two main results. Both results are explicit asymptotic formulas for eigenvalues of this operator, i.e., the modal analysis for the electrically loaded system is performed. The first set of the asymptotic formulas has remainder terms of the order O ( 1 n ) , where n is the number of an eigenvalue. These formulas are derived for the model with variable physical parameters. The second set of the asymptotic formulas has remainder terms of the order O ( 1 n 2 ) , and is derived for a less general model with constant parameters. This second set of formulas contains extra term depending on the electromechanical parameters of the model. It is shown that the spectrum asymptotically splits into two disjoint subsets, which we call the α -branch eigenvalues and the θ -branch eigenvalues. These eigenvalues being multiplied by “i” produce the set of the vibrational modes of the system. The α -branch vibrational modes are asymptotically located on certain vertical line in the left half of the complex plane and the θ -branch is asymptotically close to the imaginary axis. By having such spectral and asymptotic results, one can derive the asymptotic representation for the mode shapes and for voltage output. Asymptotics of vibrational modes and mode shapes is instrumental in the analysis of control problems for the harvester. 
    more » « less
  4. Abstract This paper is concerned with two classes of cubic quasilinear equations, which can be derived as asymptotic models from shallow-water approximation to the 2D incompressible Euler equations. One class of the models has homogeneous cubic nonlinearity and includes the integrable modified Camassa–Holm (mCH) equation and Novikov equation, and the other class encompasses both quadratic and cubic nonlinearities. It is demonstrated here that both these models possess localized peaked solutions. By constructing a Lyapunov function, these peaked waves are shown to be dynamically stable under small perturbations in the natural energy space $H^1$, without restriction on the sign of the momentum density. In particular, for the homogeneous cubic nonlinear model, we are able to further incorporate a higher-order conservation law to conclude orbital stability in $H^1\cap W^{1,4}$. Our analysis is based on a strong use of the conservation laws, the introduction of certain auxiliary functions, and a refined continuity argument. 
    more » « less
  5. The interaction of localised solitary waves with large-scale, time-varying dispersive mean flows subject to non-convex flux is studied in the framework of the modified Korteweg–de Vries (mKdV) equation, a canonical model for internal gravity wave propagation and potential vorticity fronts in stratified fluids. The effect of large amplitude, dynamically evolving mean flows on the propagation of localised waves – essentially ‘soliton steering’ by the mean flow – is considered. A recent theoretical and experimental study of this new type of dynamic soliton–mean flow interaction for convex flux has revealed two scenarios where the soliton either transmits through the varying mean flow or remains trapped inside it. In this paper, it is demonstrated that the presence of a non-convex cubic hydrodynamic flux introduces significant modifications to the scenarios for transmission and trapping. A reduced set of Whitham modulation equations is used to formulate a general mathematical framework for soliton–mean flow interaction with non-convex flux. Solitary wave trapping is stated in terms of crossing modulation characteristics. Non-convexity and positive dispersion – common for stratified fluids – imply the existence of localised, sharp transition fronts (kinks). Kinks play dual roles as a mean flow and a wave, imparting polarity reversal to solitons and dispersive mean flows, respectively. Numerical simulations of the mKdV equation agree with modulation theory predictions. The mathematical framework developed is general, not restricted to completely integrable equations like mKdV, enabling application beyond the mKdV setting to other fluid dynamic contexts subject to non-convex flux such as strongly nonlinear internal wave propagation that is prevalent in the ocean. 
    more » « less