skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hilbert expansion for Coulomb collisional kinetic models
The relativistic Vlasov-Maxwell-Landau (r-VML) system and the relativistic Landau (r-LAN) equation are fundamental models that describe the dynamics of an electron gas. In this paper, we introduce a novel weighted energy method and establish the validity of the Hilbert expansion for the one-species r-VML system and r-LAN equation. As the Knudsen number shrinks to zero, we rigorously demonstrate the relativistic Euler-Maxwell limit and relativistic Euler limit, respectively. This successfully resolves the long-standing open problem regarding the hydrodynamic limits of Landau-type equations.  more » « less
Award ID(s):
2104775
PAR ID:
10511637
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Mathematical Society
Date Published:
Journal Name:
Quarterly of Applied Mathematics
Volume:
83
Issue:
2
ISSN:
0033-569X
Page Range / eLocation ID:
211–279
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Consider the relativistic Vlasov–Maxwell–Boltzmann system describing the dynamics of an electron gas in the presence of a fixed ion background. Thanks to recent works Germain and Masmoudi (Ann Sci Éc Norm Supér 47(3):469–503, 2014), Guo et al. (J Math Phys 55(12):123102, 2014) and Deng et al. (Arch Ration Mech Anal 225(2):771–871, 2017), we establish the global-in-time validity of its Hilbert expansion and derive the limiting relativistic Euler–Maxwell system as the mean free path goes to zero. Our method is based on the L2 − L∞ framework and the Glassey–Strauss Representation of the electromagnetic field, with auxiliary H1 estimates and W1,∞ estimates to control the characteristic curves and corresponding L∞ norm. 
    more » « less
  2. The global-in-time existence of classical solutions to the relativistic Vlasov-Maxwell (RVM) system in three space dimensions remains elusive after nearly four decades of mathematical research. In this note, a simplified "toy model" is presented and studied. This toy model retains one crucial aspect of the RVM system: the phase-space evolution of the distribution function is governed by a transport equation whose forcing term satisfies a wave equation with finite speed of propagation. 
    more » « less
  3. In this paper, we study fermion ground states of the relativistic Vlasov-Poisson system arising in the semiclassical limit from relativistic quantum theory of white dwarfs. We show that fermion ground states of the three dimensional relativistic Vlasov-Poisson system exist for subcritical mass, the mass density of such fermion ground states satisfies the Chandrasekhar equation for white dwarfs, and that they are orbitally stable as long as solutions exist. 
    more » « less
  4. Motivated by the open problem of large-data global existence for the non-cutoff Boltzmann equation, we introduce a model equation that in some sense disregards the anisotropy of the Boltzmann collision kernel. We refer to this model equation as isotropic Boltzmann by analogy with the isotropic Landau equation introduced by Krieger and Strain (2012) [35]. The collision operator of our isotropic Boltzmann model converges to the isotropic Landau collision operator under a scaling limit that is analogous to the grazing collisions limit connecting (true) Boltzmann with (true) Landau. Our main result is global existence for the isotropic Boltzmann equation in the space homogeneous case, for certain parts of the “very soft potentials” regime in which global existence is unknown for the space homogeneous Boltzmann equation. The proof strategy is inspired by the work of Gualdani and Guillen (2022) [22] on isotropic Landau, and makes use of recent progress on weighted fractional Hardy inequalities. 
    more » « less
  5. We prove that the time of classical existence of smooth solutions to the relativistic Euler equations can be bounded from below in terms of norms that measure the “(sound) wave-part” of the data in Sobolev space and “transport-part” in higher regularity Sobolev space and Hölder spaces. The solutions are allowed to have nontrivial vorticity and entropy. We use the geometric framework from [M. M. Disconzi and J. Speck, The relativistic Euler equations: Remarkable null structures and regularity properties, Ann. Henri Poincaré 20(7) (2019) 2173–2270], where the relativistic Euler flow is decomposed into a “wave-part”, that is, geometric wave equations for the velocity components, density and enthalpy, and a “transport-part”, that is, transport-div-curl systems for the vorticity and entropy gradient. Our main result is that the Sobolev norm [Formula: see text] of the variables in the “wave-part” and the Hölder norm [Formula: see text] of the variables in the “transport-part” can be controlled in terms of initial data for short times. We note that the Sobolev norm assumption [Formula: see text] is the optimal result for the variables in the “wave-part”. Compared to low-regularity results for quasilinear wave equations and the three-dimensional (3D) non-relativistic compressible Euler equations, the main new challenge of the paper is that when controlling the acoustic geometry and bounding the wave equation energies, we must deal with the difficulty that the vorticity and entropy gradient are four-dimensional space-time vectors satisfying a space-time div-curl-transport system, where the space-time div-curl part is not elliptic. Due to lack of ellipticity, one cannot immediately rely on the approach taken in [M. M. Disconzi and J. Speck, The relativistic Euler equations: Remarkable null structures and regularity properties, Ann. Henri Poincaré 20(7) (2019) 2173–2270] to control these terms. To overcome this difficulty, we show that the space-time div-curl systems imply elliptic div-curl-transport systems on constant-time hypersurfaces plus error terms that involve favorable differentiations and contractions with respect to the four-velocity. By using these structures, we are able to adequately control the vorticity and entropy gradient with the help of energy estimates for transport equations, elliptic estimates, Schauder estimates and Littlewood–Paley theory. 
    more » « less