skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Kinetic simulations underestimate the effects of waves during magnetic reconnection
Collisionless plasma systems are often studied using fully kinetic simulations, where protons and electrons are treated as particles. Due to their computational expense, it is necessary to reduce the ion-to-electron mass ratio m i / m e or the ratio between plasma and cyclotron frequencies in simulations of large systems. In this Letter we show that when electron-scale waves are present in larger-scale systems, numerical parameters affect their amplitudes and effects on the larger system. Using lower-hybrid drift waves during magnetic reconnection as an example, we find that the ratio between the wave electric field and the reconnection electric field scales as m i / m e , while the phase relationship is also affected. The combination of these effects means that the anomalous drag that contributes to momentum balance in the reconnection region can be underestimated by an order of magnitude. The results are relevant to the coupling of electron-scale waves to ion-scale reconnection regions, and other systems such as collisionless shocks. Published by the American Physical Society2024  more » « less
Award ID(s):
2010231
PAR ID:
10629577
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Physical Review Research
Date Published:
Journal Name:
Physical Review Research
Volume:
6
Issue:
4
ISSN:
2643-1564
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Energy correlators that describe energy-weighted distances between two or three particles in a hadronic jet are measured using an event sample of s = 13 TeV proton-proton collisions collected by the CMS experiment and corresponding to an integrated luminosity of 36.3 fb 1 . The measured distributions are consistent with the trends in the simulation that reveal two key features of the strong interaction: confinement and asymptotic freedom. By comparing the ratio of the measured three- and two-particle energy correlator distributions with theoretical calculations that resum collinear emissions at approximate next-to-next-to-leading-logarithmic accuracy matched to a next-to-leading-order calculation, the strong coupling is determined at the Z boson mass: α S ( m Z ) = 0.122 9 0.0050 + 0.0040 , the most precise α S ( m Z ) value obtained using jet substructure observables. © 2024 CERN, for the CMS Collaboration2024CERN 
    more » « less
  2. This Letter presents the most precise measurement to date of the matter-antimatter imbalance at midrapidity in Pb-Pb collisions at a center-of-mass energy per nucleon pair s NN = 5.02 TeV . Using the Statistical Hadronization framework, it is possible to obtain the value of the electric charge and baryon chemical potentials, μ Q = 0.18 ± 0.90 MeV and μ B = 0.71 ± 0.45 MeV , with unprecedented precision. A centrality-differential study of the antiparticle-to-particle yield ratios of charged pions, protons, Ω baryons, and light (hyper)nuclei is performed. These results indicate that the system created in Pb-Pb collisions at the LHC is on average baryon-free and electrically neutral at midrapidity. © 2024 CERN, for the ALICE Collaboration2024CERN 
    more » « less
  3. Shot noise measures out-of-equilibrium current fluctuations and is a powerful tool to probe the nature of current-carrying excitations in quantum systems. Recent shot-noise measurements in the heavy-fermion strange metal YbRh 2 Si 2 exhibit a strong suppression of the Fano factor ( F )—the ratio of the current noise to the average current in the dc limit. This system is representative of metals in which electron correlations are extremely strong. Here we carry out the first theoretical study on the shot noise of diffusive metals in the regime of strong correlations. A Boltzmann-Langevin equation formulation is constructed in a quasiparticle description in the presence of strong correlations. We find that F = 3 / 4 in such a correlation regime. Thus, we establish the aforementioned Fano factor as universal to Fermi liquids, and we show that the Fano factor suppression observed in experiments on YbRh 2 Si 2 necessitates a loss of the quasiparticles. Our work opens the door to systematic theoretical studies of shot noise as a means of characterizing strongly correlated metallic phases and materials. Published by the American Physical Society2024 
    more » « less
  4. A search is presented for an extended Higgs sector with two new particles, X and ϕ , in the process X ϕ ϕ ( γ γ ) ( γ γ ) . Novel neural networks classify events with diphotons that are merged and determine the diphoton masses. The search uses LHC proton-proton collision data at s = 13 TeV collected with the CMS detector, corresponding to an integrated luminosity of 138 fb 1 . No evidence of such resonances is seen. Upper limits are set on the production cross section for m X between 300 and 3000 GeV and m ϕ / m X between 0.5% and 2.5%, representing the most sensitive search in this channel. © 2025 CERN, for the CMS Collaboration2025CERN 
    more » « less
  5. Nuclear medium effects on B + meson production are studied using the binary-collision scaled cross section ratio between events of different charged-particle multiplicities from proton-lead collisions. Data, collected by the CMS experiment in 2016 at a nucleon-nucleon center-of-mass energy of s NN = 8.16 TeV , corresponding to an integrated luminosity of 175 nb 1 , were used. The scaling factors in the ratio are determined using a novel approach based on the Z μ μ + cross sections measured in the same events. The scaled ratio for B + is consistent with unity for all event multiplicities, putting stringent constraints on nuclear modification for heavy flavor. © 2025 CERN, for the CMS Collaboration2025CERN 
    more » « less