skip to main content

This content will become publicly available on May 1, 2023

Title: Electron energization and thermal to non-thermal energy partition during earth's magnetotail reconnection
Electrons in earth's magnetotail are energized significantly both in the form of heating and in the form of acceleration to non-thermal energies. While magnetic reconnection is considered to play an important role in this energization, it still remains unclear how electrons are energized and how energy is partitioned between thermal and non-thermal components. Here, we show, based on in situ observations by NASA's magnetospheric multiscale mission combined with multi-component spectral fitting methods, that the average electron energy [Formula: see text] (or equivalently temperature) is substantially higher when the locally averaged electric field magnitude [Formula: see text] is also higher. While this result is consistent with the classification of “plasma-sheet” and “tail-lobe” reconnection during which reconnection is considered to occur on closed and open magnetic field lines, respectively, it further suggests that a stochastic Fermi acceleration in 3D, reconnection-driven turbulence is essential for the production and confinement of energetic electrons in the reconnection region. The puzzle is that the non-thermal power-law component can be quite small even when the electric field is large and the bulk population is significantly heated. The fraction of non-thermal electron energies varies from sample to sample between ∼20% and ∼60%, regardless of the electric field magnitude. more » Interestingly, these values of non-thermal fractions are similar to those obtained for the above-the-looptop hard x-ray coronal sources for solar flares. « less
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
2109083 1805829
Publication Date:
Journal Name:
Physics of Plasmas
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this paper, we report three interesting phenomena that occurred during the precursor phase of the X1.6 class flare on 2014 September 10. (1) The magnetic reconnection initiating the flare occurs between one of the two J-shaped magnetic flux ropes that constitute a sigmoidal structure and the overlying sheared magnetic arcade that runs across the sigmoid over its middle part. The reconnection formed an erupting structure that ultimately leads to flare onset. Another J-shaped magnetic flux rope remains unaffected during the whole eruption. The phenomenon is revealed by the observation made by the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory (SDO) at 94 and 131 Å. (2) Being simultaneously with starting time of the precursor, photospheric vertical electric current (VEC) around the footpoint region of the overlying magnetic arcade underwent an obvious increase, as observed by the Helioseismic and Magnetic Imager (HMI) on board SDO. By only taking into account the VEC with current density over 3 σ value (1 σ : 10 mA m −2 ), we are able to pick out precursor-associated VEC increase starting from nearly the level of zero. We regard it as a kind of powering process for the magnetic reconnection betweenmore »the two magnetic loops. (3) With high-resolution narrow-band Helium 10830 Å images taken by Goode Solar Telescope at Big Bear Solar Observatory (BBSO), we observe a narrow absorption (dark) front that runs along the erupting magnetic structure (or the erupting hot channel) and moves in the direction of the eruption during the precursor phase. Assuming the excitation mechanism of Helium atoms along the absorption front by non-thermal electrons, the phenomenon shows that the interaction between the erupted hot channel and the overlying (or surrounding) magnetic field has yielded electron acceleration.« less
  2. Aims. We analyse particle, radio, and X-ray observations during the first relativistic proton event of solar cycle 25 detected on Earth. The aim is to gain insight into the relationship between relativistic solar particles detected in space and the processes of acceleration and propagation in solar eruptive events. Methods. To this end, we used ground-based neutron monitor measurements of relativistic nucleons and space-borne measurements of electrons with similar speed to determine the arrival times of the first particles at 1 AU and to infer their solar release times. We compared the release times with the time histories of non-thermal electrons in the solar atmosphere and their escape to interplanetary space, as traced by radio spectra and X-ray light curves and images. Results. Non-thermal electrons in the corona are found to be accelerated in different regions. Some are confined in closed magnetic structures expanding during the course of the event. Three episodes of electron escape to the interplanetary space are revealed by groups of decametric-to-kilometric type III bursts. The first group appears on the low-frequency side of a type II burst produced by a coronal shock wave. The two latter groups are accompanied at higher frequencies by bursts with rapid driftsmore »to both lower and higher frequencies (forward- or reverse-drifting bursts). They are produced by electron beams that propagate both sunward and anti-sunward. The first relativistic electrons and nucleons observed near Earth are released with the third group of type III bursts, more than ten minutes after the first signatures of non-thermal electrons and of the formation of the shock wave in the corona. Although the eruptive active region is near the central meridian, several tens of degrees east of the footpoint of the nominal Parker spiral to the Earth, the kilometric spectrum of the type III bursts and the in situ detection of Langmuir waves demonstrate a direct magnetic connection between the L1 Lagrange point and the field lines onto which the electron beams are released at the Sun. Conclusions. We interpret the forward- and reverse-drifting radio bursts as evidence of reconnection between the closed expanding magnetic structures of an erupting flux rope and ambient open magnetic field lines. We discuss the origin of relativistic particles near the Earth across two scenarios: (1) acceleration at the CME-driven shock as it intercepts interplanetary magnetic field lines rooted in the western solar hemisphere and (2) an alternative where the relativistic particles are initially confined in the erupting magnetic fields and get access to the open field lines to the Earth through these reconnection events.« less
  3. Magnetic reconnection plays an important role in the release of magnetic energy and consequent energization of particles in collisionless plasmas. Energy transfer in collisionless magnetic reconnection is inherently a two-step process: reversible, collisionless energization of particles by the electric field, followed by collisional thermalization of that energy, leading to irreversible plasma heating. Gyrokinetic numerical simulations are used to explore the first step of electron energization, and we generate the first examples of field-particle correlation (FPC) signatures of electron energization in 2D strong-guide-field collisionless magnetic reconnection. We determine these velocity space signatures at the x-point and in the exhaust, the regions of the reconnection geometry in which the electron energization primarily occurs. Modeling of these velocity-space signatures shows that, in the strong-guide-field limit, the energization of electrons occurs through bulk acceleration of the out-of-plane electron flow by parallel electric field that drives the reconnection, a non-resonant mechanism of energization. We explore the variation of these velocity-space signatures over the plasma beta range 0.01 < beta_i < 1. Our analysis goes beyond the fluid picture of the plasma dynamics and exploits the kinetic features of electron energization in the exhaust region to propose a single-point diagnostic which can potentially identify a reconnectionmore »exhaust region using spacecraft observations.« less
  4. Magnetic reconnection, especially in the relativistic regime, provides an efficient mechanism for accelerating relativistic particles and thus offers an attractive physical explanation for non-thermal high-energy emission from various astrophysical sources. I present a simple analytical model that elucidates key physical processes responsible for reconnection-driven relativistic non-thermal particle acceleration in the large-system, plasmoid-dominated regime in two dimensions. The model aims to explain the numerically observed dependencies of the power-law index $p$ and high-energy cutoff $\gamma _c$ of the resulting non-thermal particle energy spectrum $f(\gamma )$ on the ambient plasma magnetization $\sigma$ , and (for $\gamma _c$ ) on the system size $L$ . In this self-similar model, energetic particles are continuously accelerated by the out-of-plane reconnection electric field $E_{\rm rec}$ until they become magnetized by the reconnected magnetic field and eventually trapped in plasmoids large enough to confine them. The model also includes diffusive Fermi acceleration by particle bouncing off rapidly moving plasmoids. I argue that the balance between electric acceleration and magnetization controls the power-law index, while trapping in plasmoids governs the cutoff, thus tying the particle energy spectrum to the plasmoid distribution.
  5. Abstract

    We perform particle-in-cell simulations to elucidate the microphysics of relativistic weakly magnetized shocks loaded with electron-positron pairs. Various external magnetizationsσ≲ 10−4and pair-loading factorsZ±≲ 10 are studied, whereZ±is the number of loaded electrons and positrons per ion. We find the following: (1) The shock becomes mediated by the ion Larmor gyration in the mean field whenσexceeds a critical valueσLthat decreases withZ±. AtσσLthe shock is mediated by particle scattering in the self-generated microturbulent fields, the strength and scale of which decrease withZ±, leading to lowerσL. (2) The energy fraction carried by the post-shock pairs is robustly in the range between 20% and 50% of the upstream ion energy. The mean energy per post-shock electron scales asE¯eZ±+11. (3) Pair loading suppresses nonthermal ion acceleration at magnetizations as low asσ≈ 5 × 10−6. The ions then become essentially thermal with mean energyE¯i, while electrons form a nonthermal tail, extending fromEZ±+11E¯itoE¯i. Whenσ= 0, particle acceleration is enhanced by the formation of intense magnetic cavities that populate the precursor during the late stages of shock evolution. Here,more »the maximum energy of the nonthermal ions and electrons keeps growing over the duration of the simulation. Alongside the simulations, we develop theoretical estimates consistent with the numerical results. Our findings have important implications for models of early gamma-ray burst afterglows.

    « less