Did you know health is not just about not being sick? It is about feeling well. In healthy ecosystems, you can find plants, animals, water, rocks, and soil, all interacting with many microbes. Thanks to this biodiversity we have clean air, fresh water, and nutritious food. Bees and other animals pollinate flowers to help grow fruits and vegetables. Birds spread seeds that grow into trees and forests. Plants clean the air we breathe. And people feel better in nature. Healthy ecosystems, therefore, keep people healthy. While public health programs teach people about healthy food and give them access to medicines, people make ecosystems healthier by protecting nature. You can help too, by taking care of your health and your surrounding ecosystem, learning about the world, and supporting decisions and actions that protect nature and people. By becoming guardians of Earth’s biodiversity, we can all have a healthy future together.
more »
« less
Are You a HAB Warrior?
Microalgae and cyanobacteria are tiny, microscopic plant-like organisms that float in the water and grow using nutrients from the water, energy from the sun and carbon dioxide gas from the air. Most microalgae and cyanobacteria are helpful because, like grass for cows on land, they provide food for aquatic animals. However, some microalgae and cyanobacteria are poisonous and when large numbers of them occur, they are called harmful algal blooms, or HABs for short. HABs can poison both humans and animals through the food they eat, the water they drink, and even the air they breathe. HABs are increasing within lakes, rivers, oceans, and estuaries worldwide because of pollution and climate change. This article will tell you about HABs in San Francisco Estuary, USA: who they are, what they look like, why they occur, how they affect plants, animals and people, and things you can do as a HAB warrior to stay safe and prevent their spread.
more »
« less
- Award ID(s):
- 1840199
- PAR ID:
- 10349971
- Date Published:
- Journal Name:
- Frontiers for Young Minds
- Volume:
- 9
- ISSN:
- 2296-6846
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Moran, Mary Ann (Ed.)ABSTRACT The mechanisms driving cyanobacterial harmful algal blooms (HABs) like those caused by Microcystis aeruginosa remain elusive, but improved defense against viral predation has been implicated for success in eutrophic environments. Our genus-level analyses of 139,023 genomes revealed that HAB-forming cyanobacteria carry vastly more restriction modification systems per genome (RMPG) than nearly all other prokaryotic genera, suggesting that viral defense is a cornerstone of their ecological success. In contrast, picocyanobacteria that numerically dominate nutrient-poor systems have the fewest RMPG within the phylum Cyanobacteria . We used classic resource competition models to explore the hypothesis that nutrient enrichments drive ecological selection for high RMPG due to increased host-phage contact rate. These classic models, agnostic to the mechanism of defense, explain how nutrient loading can select for increased RMPG but, importantly, fail to explain the extreme accumulation of these defense systems. However, extreme accumulation of RMPG can be achieved in a novel “memory” model that accounts for a unique activity of restriction modification systems: the accidental methylation of viral DNA by the methyltransferase. The methylated virus “remembers” the RM defenses of its former host and can evade these defenses if they are present in the next host. This viral memory leads to continual RM system devaluation; RMs accumulate extensively because the benefit of each addition is diminished. Our modeling leads to the hypothesis that nutrient loading and virion methylation drive the extreme accumulation of RMPG in HAB-forming cyanobacteria. Finally, our models suggest that hosts with different RMPG values can coexist when hosts have unique sets of RM systems. IMPORTANCE Harmful algal blooms (HABs), caused by cyanobacteria like Microcystis aeruginosa , are a global threat to water quality and use across the planet. Researchers have agreed that nutrient loading is a major contributor to HAB persistence. While we may understand the environmental conditions that cause HABs, we still struggle in identifying the mechanisms that explain why these organisms have a competitive edge against other, less ecologically hazardous organisms. Our interdisciplinary approach in microbiology, mathematical population modeling, and genomics allows us to use nearly 70 years of research in restriction modification systems to show that HAB-forming cyanobacteria are exceptional in their ability to defend against viruses, and this capacity is intimately tied to nutrient loading. Our hypothesis suggests that defense against viral predation is a fundamental pillar of cyanobacterial ecological strategy and an important contributor to HAB dynamics.more » « less
-
Have you eaten bread or rice recently? Or maybe something with oil in it? If you said yes, then you were likely eating foods made from seeds. Seeds are an important food source for humans and animals, and they make up our grains, lentils, nuts, and cooking oils. But seeds are also important for the plant itself, as they can be planted in the ground to grow new plants. In some plants, the seeds are covered with fruit. For example, the tomato fruit is full of seeds, and the avocado has a large seed inside. Other plants like pine trees have so-called naked seeds, with no fruit covering them. What exactly are seeds, and how do they make new plants? Why do seeds grow when you plant them and not in seed packets in the store? Keep reading and you will find these answers, and learn how fascinating, complex, and extraordinarily diverse seeds can be.more » « less
-
Eutrophication of inland waters is expected to increase the frequency and severity of harmful algal blooms (HABs). Toxin-production associated with HABs has negative effects on human health and aquatic ecosystem functioning. Despite evidence that flagellates can ingest toxin-producing cyanobacteria, interactions between members of the microbial loop are underestimated in our understanding of the food web and algal bloom dynamics. Physical and allelopathic interactions between a mixotrophic flagellate (Cryptomonas sp.) and two strains of a cyanobacteria (Microcystis aeruginosa) were investigated in a full-factorial experiment in culture. The maximum population growth rate of the mixotroph (0.25 day−1) occurred during incubation with filtrate from toxic M. aeruginosa. Cryptomonas was able to ingest toxic and non-toxic M. aeruginosa at maximal rates of 0.5 and 0.3 cells day−1, respectively. The results establish that although Cryptomonas does not derive benefits from co-incubation with M. aeruginosa, it may obtain nutritional supplement from filtrate. We also provide evidence of a reduction in cyanotoxin concentration (microcystin-LR) when toxic M. aeruginosa is incubated with the mixotroph. Our work has implications for “trophic upgrading” within the microbial food web, where cyanobacterivory by nanoflagellates may improve food quality for higher trophic levels and detoxify secondary compounds.more » « less
-
Abstract Eukaryotic microalgae play critical roles in the structure and function of marine food webs. The contribution of microalgae to food webs can be tracked using compound‐specific isotope analysis of amino acids (CSIA‐AA). Previous CSIA‐AA studies have defined eukaryotic microalgae as a single functional group in food web mixing models, despite their vast taxonomic and ecological diversity. Using controlled cultures, this work characterizes the amino acidδ13C (δ13CAA) fingerprints—a multivariate metric of amino acid carbon isotope values—of four major groups of eukaryotic microalgae: diatoms, dinoflagellates, raphidophytes, and prasinophytes. We found excellent separation of essential amino acidδ13C (δ13CEAA) fingerprints among four microalgal groups (mean posterior probability reclassification of 99.2 ± 2.9%). We also quantified temperature effects, a primary driver of microalgal bulk carbon isotope variability, on the fidelity ofδ13CAAfingerprints. A 10°C range in temperature conditions did not have significant impacts on variance inδ13CAAvalues or the diagnostic microalgalδ13CEAAfingerprints. Theseδ13CEAAfingerprints were used to identify primary producers at the base of food webs supporting consumers in two contrasting systems: (1) penguins feeding in a diatom‐based food web and (2) mixotrophic corals receiving amino acids directly from autotrophic endosymbiotic dinoflagellates and indirectly from water column diatoms, prasinophytes, and cyanobacteria, likely via heterotrophic feeding on zooplankton. The increased taxonomic specificity of CSIA‐AA fingerprints developed here will greatly improve future efforts to reconstruct the contribution of diverse eukaryotic microalgae to the sources and cycling of organic matter in food web dynamics and biogeochemical cycling studies.more » « less