skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Machine Learning Driven Pipeline for Automated Photoplethysmogram Signal Artifact Detection
Recent advances in Critical Congenital Heart Disease (CCHD) research using Photoplethysmography (PPG) signals have yielded an Internet of Things (IoT) based enhanced screening method that performs CCHD detection comparable to SpO2 screening. The use of PPG signals, however, poses a challenge due to its measurements being prone to artifacts. To comprehensively study the most effective way to remove the artifact segments from PPG waveforms, we performed feature engineering and investigated both Machine Learning (ML) and rule based algorithms to identify the optimal method of artifact detection. Our proposed artifact detection system utilizes a 3-stage ML model that incorporates both Gradient Boosting (GB) and Random Forest (RF). The proposed system achieved 84.01% of Intersection over Union (IoU), which is competitive to state-of-the-art artifact detection methods tested on higher resolution PPG.  more » « less
Award ID(s):
1934568
PAR ID:
10349981
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2021 IEEE/ACM Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE)
Page Range / eLocation ID:
149 to 154
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A photoplethysmography (PPG) is an uncomplicated and inexpensive optical technique widely used in the healthcare domain to extract valuable health-related information, e.g., heart rate variability, blood pressure, and respiration rate. PPG signals can easily be collected continuously and remotely using portable wearable devices. However, these measuring devices are vulnerable to motion artifacts caused by daily life activities. The most common ways to eliminate motion artifacts use extra accelerometer sensors, which suffer from two limitations: i) high power consumption and ii) the need to integrate an accelerometer sensor in a wearable device (which is not required in certain wearables). This paper proposes a low-power non-accelerometer-based PPG motion artifacts removal method outperforming the accuracy of the existing methods. We use Cycle Generative Adversarial Network to reconstruct clean PPG signals from noisy PPG signals. Our novel machine-learning-based technique achieves 9.5 times improvement in motion artifact removal compared to the state-of-the-art without using extra sensors such as an accelerometer, which leads to 45% improvement in energy efficiency. 
    more » « less
  2. Abstract This work details the partially observable markov decision process (POMDP) and the point-based value iteration (PBVI) algorithms for use in multisensor systems, specifically, a sensor system capable of heart rate (HR) estimation through wearable photoplethysmography (PPG) and accelerometer signals. PPG sensors are highly susceptible to motion artifact (MA); however, current methods focus more on overall MA filters, rather than action specific filtering. An end-to-end embedded human activity recognition (HAR) System is developed to represent the observation uncertainty, and two action specific PPG MA reducing filters are proposed as actions. PBVI allows optimal action decision-making based on an uncertain observation, effectively balancing correct action choice and sensor system cost. Two central systems are proposed to accompany these algorithms, one for unlimited observation access and one for limited observation access. Through simulation, it can be shown that the limited observation system performs optimally when sensor cost is negligible, while limited observation access performs optimally when a negative reward for sensor use is considered. The final general framework for POMDP and PBVI was applied to a specific HR estimation example. This work can be expanded on and used as a basis for future work on similar multisensor system. 
    more » « less
  3. Prior research has validated Photoplethysmography (PPG) as a promising biomarker for assessing stress factors in construction workers, including physical fatigue, mental stress, and heat stress. However, the reliability of PPG as a stress biomarker in construction workers is hindered by motion artifacts (MA) - distortions in blood volume pulse measurements caused by sensor movement. This paper develops a deep convolutional autoencoder-based framework, trained to detect and reduce MA in MA-contaminated PPG signals. The framework's performance is evaluated using PPG signals acquired from individuals engaged in specific construction tasks. The results demonstrate the framework has effectiveness in both detecting and reducing MA in PPG signals with a detection accuracy of 93% and improvement in signal-to-noise ratio by over 88%. This research contributes to a more reliable and error-reduced usage of PPG signals for health monitoring in the construction industry. 
    more » « less
  4. Construction workers often experience high levels of physical and mental stress due to the demanding nature of their work on construction sites. Real-time health monitoring can provide an effective means of detecting these stressors. Previous research in this field has demonstrated the potential of photoplethysmography (PPG), which represents cardiac activities, as a biomarker for assessing various stressors, including physical fatigue, mental stress, and heat stress. However, PPG acquisition during construction tasks is subject to several external noises, of which motion artifact is a major one. To address this, the study develops and examines an autoencoder network—a special type of artificial neural network—to remove PPG signals’ motion artifacts during construction tasks, thereby enhancing the accuracy of health assessments.Artifact-free PPG signals are acquired through subjects in a stationary position, which is used as the reference for training the autoencoder network. The network’s performance is examined with PPG signals acquired from the same subjects performing multiple construction tasks. The developed autoencoder network can increase the signal-to-noise ratio (SNR) by up to 33% for the corrupted signals acquired in a construction setting. This research contributes to the extensive and resilient use of PPG signals in health monitoring for construction workers. 
    more » « less
  5. Traditional one-time user authentication processes might cause friction and unfavorable user experience in many widely-used applications. This is a severe problem in particular for security-sensitive facilities if an adversary could obtain unauthorized privileges after a user’s initial login. Recently, continuous user authentication (CA) has shown its great potential by enabling seamless user authentication with few active participation. We devise a low-cost system exploiting a user’s pulsatile signals from the photoplethysmography (PPG) sensor in commercial wrist-worn wearables for CA. Compared to existing approaches, our system requires zero user effort and is applicable to practical scenarios with non-clinical PPG measurements having motion artifacts (MA). We explore the uniqueness of the human cardiac system and design an MA filtering method to mitigate the impacts of daily activities. Furthermore, we identify general fiducial features and develop an adaptive classifier using the gradient boosting tree (GBT) method. As a result, our system can authenticate users continuously based on their cardiac characteristics so little training effort is required. Experiments with our wrist-worn PPG sensing platform on 20 participants under practical scenarios demonstrate that our system can achieve a high CA accuracy of over 90% and a low false detection rate of 4% in detecting random attacks. 
    more » « less