skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Marginal Odds Ratio Estimators
The odds ratio is a common measure to assess the association between abinary predictor variable and a binary outcome. In epidemiology, the outcome is often the dis- ease status, and the predictor of interest is a suspected risk factor for the disease. The purpose of the study is an attempt to establish a causal association between exposure and disease. If the object of a study is the estimation of a marginal odds ratio, defined as the ratio of the odds that would be observed in a population if everyone were exposed versus the odds in the same population if no one were exposed, methods such as the Mantel–Haenszel estimator are commonly used. When it is necessary to adjust for many confounders and/or continuous confounders, this approach results in a biased and incon- sistent estimator, including matching and stratification by the propensity score. An alter- native to matching is inverse probability weighting by the propensity score. The resulting estimator is consistent, provided the propensity score model is correct and adjusts for all confounders.  more » « less
Award ID(s):
1934568
PAR ID:
10349987
Author(s) / Creator(s):
Date Published:
Journal Name:
Wiley StatsRef: Statistics Reference Online
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Propensity score weighting is a tool for causal inference to adjust for measured confounders in observational studies. In practice, data often present complex structures, such as clustering, which make propensity score modeling and estimation challenging. In addition, for clustered data, there may be unmeasured cluster-level covariates that are related to both the treatment assignment and outcome. When such unmeasured cluster-specific confounders exist and are omitted in the propensity score model, the subsequent propensity score adjustment may be biased. In this article, we propose a calibration technique for propensity score estimation under the latent ignorable treatment assignment mechanism, i. e., the treatment-outcome relationship is unconfounded given the observed covariates and the latent cluster-specific confounders. We impose novel balance constraints which imply exact balance of the observed confounders and the unobserved cluster-level confounders between the treatment groups. We show that the proposed calibrated propensity score weighting estimator is doubly robust in that it is consistent for the average treatment effect if either the propensity score model is correctly specified or the outcome follows a linear mixed effects model. Moreover, the proposed weighting method can be combined with sampling weights for an integrated solution to handle confounding and sampling designs for causal inference with clustered survey data. In simulation studies, we show that the proposed estimator is superior to other competitors. We estimate the effect of School Body Mass Index Screening on prevalence of overweight and obesity for elementary schools in Pennsylvania. 
    more » « less
  2. Abstract Investigating the causal relationship between exposure and time-to-event outcome is an important topic in biomedical research. Previous literature has discussed the potential issues of using hazard ratio (HR) as the marginal causal effect measure due to noncollapsibility. In this article, we advocate using restricted mean survival time (RMST) difference as a marginal causal effect measure, which is collapsible and has a simple interpretation as the difference of area under survival curves over a certain time horizon. To address both measured and unmeasured confounding, a matched design with sensitivity analysis is proposed. Matching is used to pair similar treated and untreated subjects together, which is generally more robust than outcome modeling due to potential misspecifications. Our propensity score matched RMST difference estimator is shown to be asymptotically unbiased, and the corresponding variance estimator is calculated by accounting for the correlation due to matching. Simulation studies also demonstrate that our method has adequate empirical performance and outperforms several competing methods used in practice. To assess the impact of unmeasured confounding, we develop a sensitivity analysis strategy by adapting the E -value approach to matched data. We apply the proposed method to the Atherosclerosis Risk in Communities Study (ARIC) to examine the causal effect of smoking on stroke-free survival. 
    more » « less
  3. This study investigates appropriate estimation of estimator variability in the context of causal mediation analysis that employs propensity score‐based weighting. Such an analysis decomposes the total effect of a treatment on the outcome into an indirect effect transmitted through a focal mediator and a direct effect bypassing the mediator. Ratio‐of‐mediator‐probability weighting estimates these causal effects by adjusting for the confounding impact of a large number of pretreatment covariates through propensity score‐based weighting. In step 1, a propensity score model is estimated. In step 2, the causal effects of interest are estimated using weights derived from the prior step's regression coefficient estimates. Statistical inferences obtained from this 2‐step estimation procedure are potentially problematic if the estimated standard errors of the causal effect estimates do not reflect the sampling uncertainty in the estimation of the weights. This study extends to ratio‐of‐mediator‐probability weighting analysis a solution to the 2‐step estimation problem by stacking the score functions from both steps. We derive the asymptotic variance‐covariance matrix for the indirect effect and direct effect 2‐step estimators, provide simulation results, and illustrate with an application study. Our simulation results indicate that the sampling uncertainty in the estimated weights should not be ignored. The standard error estimation using the stacking procedure offers a viable alternative to bootstrap standard error estimation. We discuss broad implications of this approach for causal analysis involving propensity score‐based weighting. 
    more » « less
  4. Summary It is important to draw causal inference from observational studies, but this becomes challenging if the confounders have missing values. Generally, causal effects are not identifiable if the confounders are missing not at random. In this article we propose a novel framework for nonparametric identification of causal effects with confounders subject to an outcome-independent missingness, which means that the missing data mechanism is independent of the outcome, given the treatment and possibly missing confounders. We then propose a nonparametric two-stage least squares estimator and a parametric estimator for causal effects. 
    more » « less
  5. In the world of public health and medicine, researchers are often trying to discover new ways of understanding and preventing diseases and other negative health outcomes. When public health researchers want to examine the relationship between some sort of exposure, like smoking, and a disease, such as lung cancer, they will often start by calculating what is called an odds ratio. An odds ratio is a comparison of odds between people who were exposed and people who were not exposed. However, odds ratios can be tricky to understand, even for experienced researchers. In this article, we will break down the odds ratio by reviewing the concepts and calculations of probability and odds. We will also discuss how to interpret an odds ratio, and how these ratios can be useful in real-world applications. 
    more » « less