Abstract Propensity score weighting is a tool for causal inference to adjust for measured confounders in observational studies. In practice, data often present complex structures, such as clustering, which make propensity score modeling and estimation challenging. In addition, for clustered data, there may be unmeasured cluster-level covariates that are related to both the treatment assignment and outcome. When such unmeasured cluster-specific confounders exist and are omitted in the propensity score model, the subsequent propensity score adjustment may be biased. In this article, we propose a calibration technique for propensity score estimation under the latent ignorable treatment assignment mechanism, i. e., the treatment-outcome relationship is unconfounded given the observed covariates and the latent cluster-specific confounders. We impose novel balance constraints which imply exact balance of the observed confounders and the unobserved cluster-level confounders between the treatment groups. We show that the proposed calibrated propensity score weighting estimator is doubly robust in that it is consistent for the average treatment effect if either the propensity score model is correctly specified or the outcome follows a linear mixed effects model. Moreover, the proposed weighting method can be combined with sampling weights for an integrated solution to handle confounding and sampling designs for causal inference with clustered survey data. In simulation studies, we show that the proposed estimator is superior to other competitors. We estimate the effect of School Body Mass Index Screening on prevalence of overweight and obesity for elementary schools in Pennsylvania.
more »
« less
Causal inference with confounders missing not at random
Summary It is important to draw causal inference from observational studies, but this becomes challenging if the confounders have missing values. Generally, causal effects are not identifiable if the confounders are missing not at random. In this article we propose a novel framework for nonparametric identification of causal effects with confounders subject to an outcome-independent missingness, which means that the missing data mechanism is independent of the outcome, given the treatment and possibly missing confounders. We then propose a nonparametric two-stage least squares estimator and a parametric estimator for causal effects.
more »
« less
- PAR ID:
- 10142598
- Date Published:
- Journal Name:
- Biometrika
- Volume:
- 106
- Issue:
- 4
- ISSN:
- 0006-3444
- Page Range / eLocation ID:
- 875 to 888
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary Point processes are probabilistic tools for modelling event data. While there exists a fast-growing literature on the relationships between point processes, how such relationships connect to causal effects remains unexplored. In the presence of unmeasured confounders, parameters from point process models do not necessarily have causal interpretations. We propose an instrumental variable method for causal inference with point process treatment and outcome. We define causal quantities based on potential outcomes and establish nonparametric identification results with a binary instrumental variable. We extend the traditional Wald estimation to deal with point process treatment and outcome, showing that it should be performed after a Fourier transform of the intention-to-treat effects on the treatment and outcome, and thus takes the form of deconvolution. We refer to this approach as generalized Wald estimation and propose an estimation strategy based on well-established deconvolution methods.more » « less
-
Valid causal inference in observational studies often requires controlling for confounders. However, in practice measurements of confounders may be noisy, and can lead to biased estimates of causal effects. We show that we can reduce bias induced by measurement noise using a large number of noisy measurements of the underlying confounders. We propose the use of matrix factorization to infer the confounders from noisy covariates. This flexible and principled framework adapts to missing values, accommodates a wide variety of data types, and can enhance a wide variety of causal inference methods. We bound the error for the induced average treatment effect estimator and show it is consistent in a linear regression setting, using Exponential Family Matrix Completion preprocessing. We demonstrate the effectiveness of the proposed procedure in numerical experiments with both synthetic data and real clinical data.more » « less
-
null (Ed.)Abstract The problem of missingness in observational data is ubiquitous. When the confounders are missing at random, multiple imputation is commonly used; however, the method requires congeniality conditions for valid inferences, which may not be satisfied when estimating average causal treatment effects. Alternatively, fractional imputation, proposed by Kim 2011, has been implemented to handling missing values in regression context. In this article, we develop fractional imputation methods for estimating the average treatment effects with confounders missing at random. We show that the fractional imputation estimator of the average treatment effect is asymptotically normal, which permits a consistent variance estimate. Via simulation study, we compare fractional imputation’s accuracy and precision with that of multiple imputation.more » « less
-
The odds ratio is a common measure to assess the association between abinary predictor variable and a binary outcome. In epidemiology, the outcome is often the dis- ease status, and the predictor of interest is a suspected risk factor for the disease. The purpose of the study is an attempt to establish a causal association between exposure and disease. If the object of a study is the estimation of a marginal odds ratio, defined as the ratio of the odds that would be observed in a population if everyone were exposed versus the odds in the same population if no one were exposed, methods such as the Mantel–Haenszel estimator are commonly used. When it is necessary to adjust for many confounders and/or continuous confounders, this approach results in a biased and incon- sistent estimator, including matching and stratification by the propensity score. An alter- native to matching is inverse probability weighting by the propensity score. The resulting estimator is consistent, provided the propensity score model is correct and adjusts for all confounders.more » « less
An official website of the United States government

