skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Resolving puzzles of the phase-transformation-based mechanism of the deep-focus earthquake
Deep-focus earthquakes that occur at 350–660 km, where pressures p =12-23 GPa and temperature T =1800-2000 K, are generally assumed to be caused by olivine→spinel phase transformation, see pioneering works [1–10]. However, there are many existing puzzles: (a) What are the mechanisms for jump from geological 10−17−10−15 s−1 to seismic 10−103s−1(see [3]) strain rates? Is it possible without phase transformation? (b) How does metastable olivine, which does not completely transform to spinel at high temperature and deeply in the region of stability of spinel for over the million years, suddenly transforms during seconds and generates seismic strain rates 10−103s−1 that produce strong seismic waves? (c) How to connect deviatorically dominated seismic signals with volume-change dominated transformation strain during phase transformations [9,11]? Here we introduce a combination of several novel concepts that allow us to resolve the above puzzles quantitatively. We treat the transformation in olivine like plastic strain-induced (instead of pressure/stress-induced) and find an analytical 3D solution for coupled deformation-transformation-heating processes in a shear band. This solution predicts conditions for severe (singular) transformation-induced plasticity (TRIP) and self-blown-up deformation-transformation-heating process due to positive thermomechanochemical feedback between TRIP and strain-induced transformation. In nature, this process leads to temperature in a band exceeding the unstable stationary temperature, above which the self-blown-up shear-heating process in the shear band occurs after finishing the phase transformation. Without phase transformation and TRIP, significant temperature and strain rate increase is impossible. Due to the much smaller band thickness in the laboratory, heating within the band does not occur, and plastic flow after the transformation is very limited. Our findings change the main concepts in studying the initiation of the deep-focus earthquakes and phase transformations during plastic flow in geophysics in general. The latter may change the interpretation of different geological phenomena, e.g., the possibility of the appearance of microdiamond directly in the cold Earth crust within shear-bands [12] during tectonic activities without subduction to the mantle and uplifting. Developed theory of the self-blown-up transformation-TRIP-heating process is applicable outside geophysics for various processes in materials under pressure and shear, e.g., for new routes of material synthesis [12,13], friction and wear, surface treatment, penetration of the projectiles and meteorites, and severe plastic deformation and mechanochemical technologies.  more » « less
Award ID(s):
1904830
PAR ID:
10350125
Author(s) / Creator(s):
Date Published:
Journal Name:
ArXivorg
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Deep-focus earthquakes that occur at 350–660 km are assumed to be caused by olivine → spinel phase transformation (PT). However, there are many existing puzzles: (a) What are the mechanisms for jump from geological 10−17 − 10−15 s−1to seismic 10 − 103 s−1strain rates? Is it possible without PT? (b) How does metastable olivine, which does not completely transform to spinel for over a million years, suddenly transform during seconds? (c) How to connect shear-dominated seismic signals with volume-change-dominated PT strain? Here, we introduce a combination of several novel concepts that resolve the above puzzles quantitatively. We treat the transformation in olivine like plastic strain-induced (instead of pressure/stress-induced) and find an analytical 3D solution for coupled deformation-transformation-heating in a shear band. This solution predicts conditions for severe (singular) transformation-induced plasticity (TRIP) and self-blown-up deformation-transformation-heating process due to positive thermomechanochemical feedback between TRIP and strain-induced transformation. This process leads to temperature in a band, above which the self-blown-up shear-heating process in the shear band occurs after finishing the PT. Our findings change the main concepts in studying the initiation of the deep-focus earthquakes and PTs during plastic flow in geophysics in general. 
    more » « less
  2. Abstract Deep‐focus earthquakes at 350–660 km are presumably caused by olivine‐spinel phase transformation (PT). This cannot, however, explain the observed high seismic strain rate, which requires PT to complete within seconds, while metastable olivine does not transform for over a million years. Recent theory quantitatively describes how severe plastic deformations (SPD) can solve this dilemma but lacking experimental proof. Here, we introduce dynamic rotational diamond anvil cell with rough diamond anvils to impose SPD on San Carlos olivine. While olivine never transformed to spinel at room temperature, we obtained reversible olivine‐ringwoodite PT under SPD at 15–28 GPa within tens of seconds. The PT pressure reduces with increasing dislocation density, microstrain, plastic strain, and decreasing crystallite size. Results demonstrate a new strain‐induced PT mechanism compared to a pressure/temperature‐induced one. Combined with SPD during olivine subduction, this mechanism can accelerate olivine‐ringwoodite PT from millions of years to timescales relevant to earthquakes. 
    more » « less
  3. The first in situ quantitative synchrotron X-ray diffraction (XRD) study of plastic strain-induced phase transformation (PT) has been performed on $$\alpha-\omega$$ PT in ultra-pure, strongly plastically predeformed Zr as an example, under different compression-shear pathways in rotational diamond anvil cell (RDAC). Radial distributions of pressure in each phase and in the mixture, and concentration of $$\omega$$-Zr, all averaged over the sample thickness, as well as thickness profile were measured. The minimum pressure for the strain-induced $$\alpha-\omega$$ PT, $$p^d_{\varepsilon}$$=1.2 GPa, is smaller than under hydrostatic loading by a factor of 4.5 and smaller than the phase equilibrium pressure by a factor of 3; it is independent of the compression-shear straining path. The theoretically predicted plastic strain-controlled kinetic equation was verified and quantified; it is independent of the pressure-plastic strain loading path and plastic deformation at pressures below $$p^d_{\varepsilon}$$. Thus, strain-induced PTs under compression in DAC and torsion in RDAC do not fundamentally differ. The yield strength of both phases is estimated using hardness and x-ray peak broadening; the yield strength in shear is not reached by the contact friction stress and cannot be evaluated using the pressure gradient. Obtained results open a new opportunity for quantitative study of strain-induced PTs and reactions with applications to material synthesis and processing, mechanochemistry, and geophysics. 
    more » « less
  4. Abstract One hypothesized mechanism that triggers deep‐focus earthquakes in oceanic subducting slabs below ∼300 km depth is transformational faulting due to the olivine‐to‐spinel phase transition. This study uses finite element modeling to investigate phase transformation‐induced stress redistribution and material weakening in olivine. A thermodynamically consistent constitutive model is developed to capture the evolution of phase transformation in olivine under different pressure and temperature conditions. The overall numerical model enables considering multiscale material features, including the polycrystalline structure, mesoscale heterogeneity, and various phases or variants of phases at the microscopic level, and accounts for viscoplastic behaviors with thermo‐mechanical coupling effects. The model is validated with several benchmarks, including a phase diagram of phase transformation from olivine to spinel. The validated model is used to study the interactive behaviors between defects (heterogeneity) and phase transformation. The simulation results reveal that spinel formation under pressure initiates near inclusions and along the grain boundaries, consistent with experimental observations. At lower temperatures, the transformation leads to the formation of thin conjugate bands of spinel diagonal to the compression loading direction. Local stress analysis along these bands also suggests the initiation of faulting. In contrast, the numerical results at higher transformation rates show that significant spinel formation occurs over a larger area at elevated temperatures, leading to ductile behavior, which agrees with experimental findings. Numerical simulation of multiple inclusions under confined pressure also shows the formation of a network of spinel bands resembling phase‐transformation patterns observed in the laboratory experiments. Additionally, stress softening patterns due to phase transformation are similar to experimental observations. 
    more » « less
  5. Abstract The individual effects of strain rate and temperature on the strain hardening rate of a quenched and partitioned steel have been examined. During quasistatic tests, resistive heating was used to simulate the deformation-induced heating that occurs during high-strain-rate deformation, while the deformation-induced martensitic transformation was tracked by a combination of x-ray and electron backscatter diffraction. Unique work hardening rates under various thermal–mechanical conditions are discussed, based on the balance between the concurrent dislocation slip and transformation-induced plasticity deformation mechanisms. The diffraction and strain hardening data suggest that the imposed strain rate and temperature exhibited dissonant influences on the martensitic phase transformation. Increasing the strain rate appeared to enhance the martensitic transformation, while increasing the temperature suppressed the martensitic transformation. 
    more » « less