skip to main content


Title: Elaborative Simplification: Content Addition and Explanation Generation in Text Simplification
Much of modern-day text simplification research focuses on sentence-level simplification, transforming original, more complex sentences into simplified versions. However, adding content can often be useful when difficult concepts and reasoning need to be explained. In this work, we present the first data-driven study of content addition in text simplification, which we call elaborative simplification. We introduce a new annotated dataset of 1.3K instances of elaborative simplification in the Newsela corpus, and analyze how entities, ideas, and concepts are elaborated through the lens of contextual specificity. We establish baselines for elaboration generation using large-scale pre-trained language models, and demonstrate that considering contextual specificity during generation can improve performance. Our results illustrate the complexities of elaborative simplification, suggesting many interesting directions for future work.  more » « less
Award ID(s):
1850153
PAR ID:
10350193
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021
Page Range / eLocation ID:
5123 to 5137
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Automated text simplification, a technique useful for making text more accessible to people such as children and emergent bilinguals, is often thought of as a monolingual translation task from complex sentences to simplified sentences using encoder-decoder models. This view fails to account for elaborative simplification, where new information is added into the simplified text. This paper proposes to view elaborative simplification through the lens of the Question Under Discussion (QUD) framework, providing a robust way to investigate what writers elaborate upon, how they elaborate, and how elaborations fit into the discourse context by viewing elaborations as explicit answers to implicit questions. We introduce ELABQUD, consisting of 1.3K elaborations accompanied with implicit QUDs, to study these phenomena. We show that explicitly modeling QUD (via question generation) not only provides essential understanding of elaborative simplification and how the elaborations connect with the rest of the discourse, but also substantially improves the quality of elaboration generation. 
    more » « less
  2. Automated text simplification aims to produce simple versions of complex texts. This task is especially useful in the medical domain, where the latest medical findings are typically communicated via complex and technical articles. This creates barriers for laypeople seeking access to up-to-date medical findings, consequently impeding progress on health literacy. Most existing work on medical text simplification has focused on monolingual settings, with the result that such evidence would be available only in just one language (most often, English). This work addresses this limitation via multilingual simplification, i.e., directly simplifying complex texts into simplified texts in multiple languages. We introduce MultiCochrane, the first sentence-aligned multilingual text simplification dataset for the medical domain in four languages: English, Spanish, French, and Farsi. We evaluate fine-tuned and zero-shot models across these languages with extensive human assessments and analyses. Although models can generate viable simplified texts, we identify several outstanding challenges that this dataset might be used to address. 
    more » « less
  3. Automated simplification models aim to make input texts more readable. Such methods have the potential to make complex information accessible to a wider audience, e.g., providing access to recent medical literature which might otherwise be impenetrable for a lay reader. However, such models risk introducing errors into automatically simplified texts, for instance by inserting statements unsupported by the corresponding original text, or by omitting key information. Providing more readable but inaccurate versions of texts may in many cases be worse than providing no such access at all. The problem of factual accuracy (and the lack thereof) has received heightened attention in the context of summarization models, but the factuality of automatically simplified texts has not been investigated. We introduce a taxonomy of errors that we use to analyze both references drawn from standard simplification datasets and state-of-the-art model outputs. We find that errors often appear in both that are not captured by existing evaluation metrics, motivating a need for research into ensuring the factual accuracy of automated simplification models. 
    more » « less
  4. Automatic Text Simplification (ATS), which replaces text with simpler equivalents, is rapidly improving. While some research has examined ATS reading-assistance tools, little has examined preferences of adults who are deaf or hard-of-hearing (DHH), and none empirically evaluated lexical simplification technology (replacement of individual words) with these users. Prior research has revealed that U.S. DHH adults have lower reading literacy on average than their hearing peers, with unique characteristics to their literacy profile. We investigate whether DHH adults perceive a benefit from lexical simplification applied automatically or when users are provided with greater autonomy, with on-demand control and visibility as to which words are replaced. Formative interviews guided the design of an experimental study, in which DHH participants read English texts in their original form and with lexical simplification applied automatically or on-demand. Participants indicated that they perceived a benefit form lexical simplification, and they preferred a system with on-demand simplification. 
    more » « less
  5. null (Ed.)
    Text Simplification improves the readability of sentences through several rewriting transformations, such as lexical paraphrasing, deletion, and splitting. Current simplification systems are predominantly sequence-to-sequence models that are trained end-to-end to perform all these operations simultaneously. However, such systems limit themselves to mostly deleting words and cannot easily adapt to the requirements of different target audiences. In this paper, we propose a novel hybrid approach that leverages linguistically-motivated rules for splitting and deletion, and couples them with a neural paraphrasing model to produce varied rewriting styles. We introduce a new data augmentation method to improve the paraphrasing capability of our model. Through automatic and manual evaluations, we show that our proposed model establishes a new state-of-the-art for the task, paraphrasing more often than the existing systems, and can control the degree of each simplification operation applied to the input texts. 
    more » « less