skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multilingual Simplification of Medical Texts
Automated text simplification aims to produce simple versions of complex texts. This task is especially useful in the medical domain, where the latest medical findings are typically communicated via complex and technical articles. This creates barriers for laypeople seeking access to up-to-date medical findings, consequently impeding progress on health literacy. Most existing work on medical text simplification has focused on monolingual settings, with the result that such evidence would be available only in just one language (most often, English). This work addresses this limitation via multilingual simplification, i.e., directly simplifying complex texts into simplified texts in multiple languages. We introduce MultiCochrane, the first sentence-aligned multilingual text simplification dataset for the medical domain in four languages: English, Spanish, French, and Farsi. We evaluate fine-tuned and zero-shot models across these languages with extensive human assessments and analyses. Although models can generate viable simplified texts, we identify several outstanding challenges that this dataset might be used to address.  more » « less
Award ID(s):
2144493 2145479
PAR ID:
10511650
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Date Published:
Journal Name:
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Page Range / eLocation ID:
16662 to 16692
Format(s):
Medium: X
Location:
Singapore
Sponsoring Org:
National Science Foundation
More Like this
  1. Access to higher education is critical for minority populations and emergent bilingual students. However, the language used by higher education institutions to communicate with prospective students is often too complex; concretely, many institutions in the US publish admissions application instructions far above the average reading level of a typical high school graduate, often near the 13th or 14th grade level. This leads to an unnecessary barrier between students and access to higher education. This work aims to tackle this challenge via text simplification. We present PSAT (Professionally Simplified Admissions Texts), a dataset with 112 admissions instructions randomly selected from higher education institutions across the US. These texts are then professionally simplified, and verified and accepted by subject-matter experts who are full-time employees in admissions offices at various institutions. Additionally, PSAT comes with manual alignments of 1,883 original-simplified sentence pairs. The result is a first-of-its-kind corpus for the evaluation and fine-tuning of text simplification systems in a high-stakes genre distinct from existing simplification resources. 
    more » « less
  2. Automated simplification models aim to make input texts more readable. Such methods have the potential to make complex information accessible to a wider audience, e.g., providing access to recent medical literature which might otherwise be impenetrable for a lay reader. However, such models risk introducing errors into automatically simplified texts, for instance by inserting statements unsupported by the corresponding original text, or by omitting key information. Providing more readable but inaccurate versions of texts may in many cases be worse than providing no such access at all. The problem of factual accuracy (and the lack thereof) has received heightened attention in the context of summarization models, but the factuality of automatically simplified texts has not been investigated. We introduce a taxonomy of errors that we use to analyze both references drawn from standard simplification datasets and state-of-the-art model outputs. We find that errors often appear in both that are not captured by existing evaluation metrics, motivating a need for research into ensuring the factual accuracy of automated simplification models. 
    more » « less
  3. The recent rapid development in Natural Language Processing (NLP) has greatly en- hanced the effectiveness of Intelligent Tutoring Systems (ITS) as tools for healthcare education. These systems hold the potential to improve health-related quality of life (HRQoL) outcomes, especially for populations with limited English reading and writing skills. However, despite the progress in pre-trained multilingual NLP models, there exists a noticeable research gap when it comes to code-switching within the medical context. Code-switching is a prevalent phenomenon in multilingual communities where individuals seamlessly transition between languages during conversations. This presents a distinctive challenge for healthcare ITS aimed at serving multilin- gual communities, as it demands a thorough understanding of and accurate adaptation to code- switching, which has thus far received limited attention in research. The hypothesis of our work asserts that the development of an ITS for healthcare education, culturally appropriate to the Hispanic population with frequent code-switching practices, is both achievable and pragmatic. Given that text classification is a core problem to many tasks in ITS, like sentiment analysis, topic classification, and smart replies, we target text classification as the application domain to validate our hypothesis. Our model relies on pre-trained word embeddings to offer rich representations for understand- ing code-switching medical contexts. However, training such word embeddings, especially within the medical domain, poses a significant challenge due to limited training corpora. In our approach to address this challenge, we identify distinct English and Spanish embeddings, each trained on medical corpora, and subsequently merge them into a unified vector space via space transforma- tion. In our study, we demonstrate that singular value decomposition (SVD) can be used to learn a linear transformation (a matrix), which aligns monolingual vectors from two languages in a single meta-embedding. As an example, we assessed the similarity between the words “cat” and “gato” both before and after alignment, utilizing the cosine similarity metric. Prior to alignment, these words exhibited a similarity score of 0.52, whereas after alignment, the similarity score increased to 0.64. This example illustrates that aligning the word vectors in a meta-embedding enhances the similarity between these words, which share the same meaning in their respective languages. To assess the quality of the representations in our meta-embedding in the context of code-switching, we employed a neural network to conduct text classification tasks on code-switching datasets. Our results demonstrate that, compared to pre-trained multilingual models, our model can achieve high performance in text classification tasks while utilizing significantly fewer parameters. 
    more » « less
  4. Much of modern-day text simplification research focuses on sentence-level simplification, transforming original, more complex sentences into simplified versions. However, adding content can often be useful when difficult concepts and reasoning need to be explained. In this work, we present the first data-driven study of content addition in text simplification, which we call elaborative simplification. We introduce a new annotated dataset of 1.3K instances of elaborative simplification in the Newsela corpus, and analyze how entities, ideas, and concepts are elaborated through the lens of contextual specificity. We establish baselines for elaboration generation using large-scale pre-trained language models, and demonstrate that considering contextual specificity during generation can improve performance. Our results illustrate the complexities of elaborative simplification, suggesting many interesting directions for future work. 
    more » « less
  5. We consider the problem of learning to simplify medical texts. This is important because most reliable, up-to-date information in biomedicine is dense with jargon and thus practically inaccessible to the lay audience. Furthermore, manual simplification does not scale to the rapidly growing body of biomedical literature, motivating the need for automated approaches. Unfortunately, there are no large-scale resources available for this task. In this work we introduce a new corpus of parallel texts in English comprising technical and lay summaries of all published evidence pertaining to different clinical topics. We then propose a new metric based on likelihood scores from a masked language model pretrained on scientific texts. We show that this automated measure better differentiates between technical and lay summaries than existing heuristics. We introduce and evaluate baseline encoder-decoder Transformer models for simplification and propose a novel augmentation to these in which we explicitly penalize the decoder for producing “jargon” terms; we find that this yields improvements over baselines in terms of readability. 
    more » « less