Early detection of incipient faults is of vital im- portance to reducing maintenance costs, saving energy, and enhancing occupant comfort in buildings. Popular supervised learning models such as deep neural networks are considered promising due to their ability to directly learn from labeled fault data; however, it is known that the performance of supervised learning approaches highly relies on the availability and quality of labeled training data. In Fault Detection and Diagnosis (FDD) applications, the lack of labeled incipient fault data has posed a major challenge to applying these supervised learning techniques to commercial buildings. To overcome this challenge, this paper proposes using Monte Carlo dropout (MC-dropout) to enhance the supervised learning pipeline, so that the resulting neural network is able to detect and diagnose unseen incipient fault examples. We also examine the proposed MC-dropout method on the RP-1043 dataset to demonstrate its effectiveness in indicating the most likely incipient fault types.
more »
« less
Transform Waveforms into Signature Vectors for General-purpose Incipient Fault Detection
Power system equipment presents special signatures at the incipient stage of faults. As more renewables are integrated into the systems, these signatures are harder to detect. If faults are detected at an early stage, economical losses and power outages can be avoided in modern power grids. Many researchers and power engineers have proposed a series of signature-specific methods for one type of equipment's waveform abnormality. However, conventional methods are not designed to identify multiple types of incipient faults (IFs) signatures at the same time. Therefore, we develop a general-purpose IF detection method that detects waveform abnormality stemming from multiple types of devices. To avoid the computational burden of the general-purpose IF detection method, we embed the abnormality signatures into a vector and develop a pre-training model (PTM) for machine understanding. In the PTM, signal "words," "sentences," and "dictionaries" are designed and proposed. Through the comparison with a machine learning classifier and a simple probabilistic language model, the results show a superior detection performance and reveal that the training radius is highly related to the size of abnormal waveforms.
more »
« less
- Award ID(s):
- 1810537
- PAR ID:
- 10350251
- Date Published:
- Journal Name:
- IEEE Transactions on Power Delivery
- ISSN:
- 0885-8977
- Page Range / eLocation ID:
- 1 to 1
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Early detection of incipient faults is of vital im- portance to reducing maintenance costs, saving energy, and enhancing occupant comfort in buildings. Popular supervised learning models such as deep neural networks are considered promising due to their ability to directly learn from labeled fault data; however, it is known that the performance of supervised learning approaches highly relies on the availability and quality of labeled training data. In Fault Detection and Diagnosis (FDD) applications, the lack of labeled incipient fault data has posed a major challenge to applying these supervised learning techniques to commercial buildings. To overcome this challenge, this paper proposes using Monte Carlo dropout (MC-dropout) to enhance the supervised learning pipeline, so that the resulting neural network is able to detect and diagnose unseen incipient fault examples. We also examine the proposed MC-dropout method on the RP-1043 dataset to demonstrate its effectiveness in indicating the most likely incipient fault types.more » « less
-
As the number of pre-trained machine learning (ML) models is growing exponentially, data reduction tools are not catching up. Existing data reduction techniques are not specifically designed for pre-trained model (PTM) dataset files. This is largely due to a lack of understanding of the patterns and characteristics of these datasets, especially those relevant to data reduction and compressibility. This paper presents the first, exhaustive analysis to date of PTM datasets on storage compressibility. Our analysis spans different types of data reduction and compression techniques, from hash-based data deduplication, data similarity detection, to dictionary-coding compression. Our analysis explores these techniques at three data granularity levels, from model layers, model chunks, to model parameters. We draw new observations that indicate that modern data reduction tools are not effective when handling PTM datasets. There is a pressing need for new compression methods that take into account PTMs' data characteristics for effective storage reduction. Motivated by our findings, we design Elf, a simple yet effective, error-bounded, lossy floating-point compression method. Elf transforms floating-point parameters in such a way that the common exponent field of the transformed parameters can be completely eliminated to save storage space. We develop Elves, a compression framework that integrates Elf along with several other data reduction methods. Elves uses the most effective method to compress PTMs that exhibit different patterns. Evaluation shows that Elves achieves an overall compression ratio of 1.52×, which is 1.31×, 1.32× and 1.29× higher than a general-purpose compressor (zstd), an error-bounded lossy compressor (SZ3), and the uniform model quantization, respectively, with negligible model accuracy loss.more » « less
-
This paper presents a novel approach to fall prediction for bipedal robots, specifically targeting the detection of potential falls while standing caused by abrupt, incipient, and intermittent faults. Leveraging a 1D convolutional neural network (CNN), our method aims to maximize lead time for fall prediction while minimizing false positive rates. The proposed algorithm uniquely integrates the detection of various fault types and estimates the lead time for potential falls. Our contributions include the development of an algorithm capable of detecting abrupt, incipient, and intermittent faults in full-sized robots, its implementation using both simulation and hardware data for a humanoid robot, and a method for estimating lead time. Evaluation metrics, including false positive rate, lead time, and response time, demonstrate the efficacy of our approach. Particularly, our model achieves impressive lead times and response times across different fault scenarios with a false positive rate of 0. The findings of this study hold significant implications for enhancing the safety and reliability of bipedal robotic systems.more » « less
-
Manufacturing process signatures reflect the process stability and anomalies that potentially lead to detrimental effects on the manufactured outcomes. Sensing technologies, especially in-situ image sensors, are widely used to capture process signatures for diagnostics and prognostics. This imaging data is crucial evidence for process signature characterization and monitoring. A critical aspect of process signature analysis is identifying the unique patterns in an image that differ from the generic behavior of the manufacturing process in order to detect anomalies. It is equivalent to separating the “unique features” and process-wise (or phase-wise) “shared features” from the same image and recognizing the transient anomaly, i.e., recognizing the outlier “unique features”. In state-of-the-art literature, image-based process signature analysis relies on conventional feature extraction procedures, which limit the “view” of information to each image and cannot decouple the shared and unique features. Consequently, the features extracted are less interpretable, and the anomaly detection method cannot distinguish the abnormality in the current process signature from the process-wise evolution. Targeting this limitation, this study proposes personalized feature extraction (PFE) to decouple process-wise shared features and transient unique features from a sensor image and further develops process signature characterization and anomaly detection strategies. The PFE algorithm is designed for heterogeneous data with shared features. Supervised and unsupervised anomaly detection strategies are developed upon PFE features to remove the shared features from a process signature and examine the unique features for abnormality. The proposed method is demonstrated on two datasets (i) selected data from the 2018 AM Benchmark Test Series from the National Institute of Standards and Technology (NIST), and (ii) thermal measurements in additive manufacturing of a thin-walled structure of Ti–6Al–4V. The results highlight the power of personalized modeling in extracting features from manufacturing imaging data.more » « less
An official website of the United States government

