The challenge of quantum computing is to combine error resilience with universal computation. Diagonal gates such as the transversal T gate play an important role in implementing a universal set of quantum operations. This paper introduces a framework that describes the process of preparing a code state, applying a diagonal physical gate, measuring a code syndrome, and applying a Pauli correction that may depend on the measured syndrome (the average logical channel induced by an arbitrary diagonal gate). It focuses on CSS codes, and describes the interaction of code states and physical gates in terms of generator coefficients determined by the induced logical operator. The interaction of code states and diagonal gates depends very strongly on the signs of Z -stabilizers in the CSS code, and the proposed generator coefficient framework explicitly includes this degree of freedom. The paper derives necessary and sufficient conditions for an arbitrary diagonal gate to preserve the code space of a stabilizer code, and provides an explicit expression of the induced logical operator. When the diagonal gate is a quadratic form diagonal gate (introduced by Rengaswamy et al.), the conditions can be expressed in terms of divisibility of weights in the two classical codes that determine the CSS code. These codes find application in magic state distillation and elsewhere. When all the signs are positive, the paper characterizes all possible CSS codes, invariant under transversal Z -rotation through π / 2 l , that are constructed from classical Reed-Muller codes by deriving the necessary and sufficient constraints on l . The generator coefficient framework extends to arbitrary stabilizer codes but there is nothing to be gained by considering the more general class of non-degenerate stabilizer codes.
more »
« less
CSS codes that are oblivious to coherent noise
Physical platforms such as trapped ions suffer from coherent noise that does not follow a simple stochastic model. We view coherent errors as rotations about a particular axis, and observe that since they can accumulate coherently over time, they can be more damaging. It is natural to consider coherent noise acting transversally giving rise to an effective error, which is a Z-rotation on each qubit by some angle. Rather than addressing coherent noise through active error correction, we instead investigate passive mitigation through decoherence free subspaces. In the language of stabilizer codes, we require the noise to preserve the code space, and to act trivially (as the logical identity operator) on the protected information. Thus, we develop necessary and sufficient conditions for all transversal Z-rotations to preserve the code space of a stabilizer code.
more »
« less
- Award ID(s):
- 1908730
- PAR ID:
- 10350426
- Date Published:
- Journal Name:
- IEEE International Symposium on Information Theory
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Fault-tolerant cluster states form the basis for scalable measurement-based quantum computation. Recently, new stabilizer codes for scalable circuit-based quantum computation have been introduced that have very high thresholds under biased noise where the qubit predominantly suffers from one type of error, e.g. dephasing. However, extending these advances in stabilizer codes to generate high-threshold cluster states for biased noise has been a challenge, as the standard method for foliating stabilizer codes to generate fault-tolerant cluster states does not preserve the noise bias. In this work, we overcome this barrier by introducing a generalization of the cluster state that allows us to foliate stabilizer codes in a bias-preserving way. As an example of our approach, we construct a foliated version of the XZZX code which we call the XZZX cluster state. We demonstrate that under a circuit-level-noise model, our XZZX cluster state has a threshold more than double the usual cluster state when dephasing errors are more likely than errors that cause bit flips by a factor of order ~100 or more.more » « less
-
We provide the first tensor-network method for computing quantum weight enumerator polynomials in the most general form. If a quantum code has a known tensor-network construction of its encoding map, our method is far more efficient, and in some cases exponentially faster than the existing approach. As a corollary, it produces decoders and an algorithm that computes the code distance. For non-(Pauli)-stabilizer codes, this constitutes the current best algorithm for computing the code distance. For degenerate stabilizer codes, it can be substantially faster compared to the current methods. We also introduce novel weight enumerators and their applications. In particular, we show that these enumerators can be used to compute logical error rates exactly and thus construct (optimal) decoders for any independent and identically distributed single qubit or qudit error channels. The enumerators also provide a more efficient method for computing nonstabilizerness in quantum many-body states. As the power for these speedups rely on a quantum Lego decomposition of quantum codes, we further provide systematic methods for decomposing quantum codes and graph states into a modular construction for which our technique applies. As a proof of principle, we perform exact analyses of the deformed surface codes, the holographic pentagon code, and the two-dimensional Bacon-Shor code under (biased) Pauli noise and limited instances of coherent error at sizes that are inaccessible by brute force. Published by the American Physical Society2024more » « less
-
Concatenating bosonic error-correcting codes with qubit codes can substantially boost the error correcting power of the original qubit codes. It is not clear how to concatenate optimally, given that there are several bosonic codes and concatenation schemes to choose from, including the recently discovered Gottesman-Kitaev-Preskill (GKP) – stabilizer codes [Phys. Rev. Lett. 125, 080503 (2020)] that allow protection of a logical bosonic mode from fluctuations of the conjugate variables of the mode. We develop efficient maximum-likelihood decoders for and analyze the performance of three different concatenations of codes taken from the following set: qubit stabilizer codes, analog or Gaussian stabilizer codes, GKP codes, and GKP-stabilizer codes. We benchmark decoder performance against additive Gaussian white noise, corroborating our numerics with analytical calculations. We observe that the concatenation involving GKP-stabilizer codes outperforms the more conventional concatenation of a qubit stabilizer code with a GKP code in some cases. We also propose a GKP-stabilizer code that suppresses fluctuations in both conjugate variables without extra quadrature squeezing and formulate qudit versions of GKP-stabilizer codes.more » « less
-
null (Ed.)Universal quantum computation requires the implementation of a logical non-Clifford gate. In this paper, we characterize all stabilizer codes whose code subspaces are preserved under physical T and T † gates. For example, this could enable magic state distillation with non-CSS codes and, thus, provide better parameters than CSS-based protocols. However, among non-degenerate stabilizer codes that support transversal T, we prove that CSS codes are optimal. We also show that triorthogonal codes are, essentially, the only family of CSS codes that realize logical transversal T via physical transversal T. Using our algebraic approach, we reveal new purely-classical coding problems that are intimately related to the realization of logical operations via transversal T. Decreasing monomial codes are also used to construct a code that realizes logical CCZ. Finally, we use Ax's theorem to characterize the logical operation realized on a family of quantum Reed-Muller codes. This result is generalized to finer angle Z-rotations in https://arxiv.org/abs/1910.09333.more » « less
An official website of the United States government

