Fault-tolerant cluster states form the basis for scalable measurement-based quantum computation. Recently, new stabilizer codes for scalable circuit-based quantum computation have been introduced that have very high thresholds under biased noise where the qubit predominantly suffers from one type of error, e.g. dephasing. However, extending these advances in stabilizer codes to generate high-threshold cluster states for biased noise has been a challenge, as the standard method for foliating stabilizer codes to generate fault-tolerant cluster states does not preserve the noise bias. In this work, we overcome this barrier by introducing a generalization of the cluster state that allows us to foliate stabilizer codes in a bias-preserving way. As an example of our approach, we construct a foliated version of the XZZX code which we call the XZZX cluster state. We demonstrate that under a circuit-level-noise model, our XZZX cluster state has a threshold more than double the usual cluster state when dephasing errors are more likely than errors that cause bit flips by a factor of order ~100 or more.
more » « less- Award ID(s):
- 2137740
- NSF-PAR ID:
- 10394531
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- npj Quantum Information
- Volume:
- 9
- Issue:
- 1
- ISSN:
- 2056-6387
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Measurement-based quantum computing (MBQC) is an alternative model of quantum computation that is equivalent to the standard gate-based model and is the preferred approach for several optical quantum computing architectures. In MBQC, a quantum computation is executed by preparing an entangled cluster state and then selectively measuring qubits. MBQC can be made fault-tolerant by creating an MBQC computation that executes the standard surface code, an approach known as "foliation." Recent results on gate-based quantum computing have demonstrated that in the presence of biased noise, a modified version of the surface code known as the XZZX code has much higher thresholds than the standard surface code. However, naively foliating the XZZX code does not result in a high-threshold fault-tolerant MBQC, because the foliation procedure does not preserve the noise bias of the physical qubits. To create a high-threshold fault-tolerant MBQC, we introduce a modified cluster state that preserves the bias, and use our modified cluster state to construct an MBQC computation that executes the XZZX code. Using full circuit-level noise simulations, we show that the threshold of our modified MBQC is higher than either the standard fault-tolerant MBQC or the naïve foliated XZZX code in the presence of biased noise, demonstrating the advantage of our approach.more » « less
-
Abstract We study the effectiveness of quantum error correction against coherent noise. Coherent errors (for example, unitary noise) can interfere constructively, so that in some cases the average infidelity of a quantum circuit subjected to coherent errors may increase quadratically with the circuit size; in contrast, when errors are incoherent (for example, depolarizing noise), the average infidelity increases at worst linearly with circuit size. We consider the performance of quantum stabilizer codes against a noise model in which a unitary rotation is applied to each qubit, where the axes and angles of rotation are nearly the same for all qubits. In particular, we show that for the toric code subject to such independent coherent noise, and for minimal-weight decoding, the logical channel after error correction becomes increasingly incoherent as the length of the code increases, provided the noise strength decays inversely with the code distance. A similar conclusion holds for weakly correlated coherent noise. Our methods can also be used for analyzing the performance of other codes and fault-tolerant protocols against coherent noise. However, our result does not show that the coherence of the logical channel is suppressed in the more physically relevant case where the noise strength is held constant as the code block grows, and we recount the difficulties that prevented us from extending the result to that case. Nevertheless our work supports the idea that fault-tolerant quantum computing schemes will work effectively against coherent noise, providing encouraging news for quantum hardware builders who worry about the damaging effects of control errors and coherent interactions with the environment.
-
null (Ed.)Measurement-based quantum computing (MBQC) is a promising alternative to traditional circuit-based quantum computing predicated on the construction and measurement of cluster states. Recent work has demonstrated that MBQC provides a more general framework for fault-tolerance that extends beyond foliated quantum error-correcting codes. We systematically expand on that paradigm, and use combinatorial tiling theory to study and construct new examples of fault-tolerant cluster states derived from crystal structures. Included among these is a robust self-dual cluster state requiring only degree- 3 connectivity. We benchmark several of these cluster states in the presence of circuit-level noise, and find a variety of promising candidates whose performance depends on the specifics of the noise model. By eschewing the distinction between data and ancilla, this malleable framework lays a foundation for the development of creative and competitive fault-tolerance schemes beyond conventional error-correcting codes.more » « less
-
Entanglement is the key resource for measurement-based quantum computing. It is stored in quantum states known as cluster states, which are prepared offline and enable quantum computing by means of purely local measurements. Universal quantum computing requires cluster states that are both large and possess (at least) a two-dimensional topology. Continuous-variable cluster states—based on bosonic modes rather than qubits—have previously been generated on a scale exceeding one million modes, but only in one dimension. Here, we report generation of a large-scale two-dimensional continuous-variable cluster state. Its structure consists of a 5- by 1240-site square lattice that was tailored to our highly scalable time-multiplexed experimental platform. It is compatible with Bosonic error-correcting codes that, with higher squeezing, enable fault-tolerant quantum computation.more » « less
-
Abstract To achieve universal quantum computation via general fault-tolerant schemes, stabilizer operations must be supplemented with other non-stabilizer quantum resources. Motivated by this necessity, we develop a resource theory for magic quantum channels to characterize and quantify the quantum ‘magic’ or non-stabilizerness of noisy quantum circuits. For qudit quantum computing with odd dimension
d , it is known that quantum states with non-negative Wigner function can be efficiently simulated classically. First, inspired by this observation, we introduce a resource theory based on completely positive-Wigner-preserving quantum operations as free operations, and we show that they can be efficiently simulated via a classical algorithm. Second, we introduce two efficiently computable magic measures for quantum channels, called the mana and thauma of a quantum channel. As applications, we show that these measures not only provide fundamental limits on the distillable magic of quantum channels, but they also lead to lower bounds for the task of synthesizing non-Clifford gates. Third, we propose a classical algorithm for simulating noisy quantum circuits, whose sample complexity can be quantified by the mana of a quantum channel. We further show that this algorithm can outperform another approach for simulating noisy quantum circuits, based on channel robustness. Finally, we explore the threshold of non-stabilizerness for basic quantum circuits under depolarizing noise.