skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: OGLE-2019-BLG-0304: Competing Interpretations between a Planet–binary Model and a Binary-source + Binary-lens Model
More Like this
  1. The integrity of the final printed components is mostly dictated by the adhesion between the particles and phases that form upon solidification, which is a major problem in printing metallic parts using available In-Space Manufacturing (ISM) technologies based on the Fused Deposition Modeling (FDM) methodology. Understanding the melting/solidification process helps increase particle adherence and allows to produce components with greater mechanical integrity. We developed a phase-field model of solidification for binary alloys. The phase-field approach is unique in capturing the microstructure with computationally tractable costs. The developed phase-field model of solidification of binary alloys satisfies the stability conditions at all temperatures. The suggested model is tuned for Ni-Cu alloy feedstocks. We derived the Ginzburg-Landau equations governing the phase transformation kinetics and solved them analytically for the dilute solution. We calculated the concentration profile as a function of interface velocity for a one-dimensional steady-state diffuse interface neglecting elasticity and obtained the partition coefficient, k, as a function of interface velocity. Numerical simulations for the diluted solution are used to study the interface velocity as a function of undercooling for the classic sharp interface model, partitionless solidification, and thin interface. 
    more » « less
  2. Abstract Most existing diagnostic models are developed to detect whether students have mastered a set of skills of interest, but few have focused on identifying what scientific misconceptions students possess. This article developed a general dual‐purpose model for simultaneously estimating students' overall ability and the presence and absence of misconceptions. The expectation‐maximization algorithm was developed to estimate the model parameters. A simulation study was conducted to evaluate to what extent the parameters can be accurately recovered under varied conditions. A set of real data in science education was also analyzed to examine the viability of the proposed model in practice. 
    more » « less