skip to main content

Title: Engagement in Practice: STEM Engagement through Mentoring
Less than 30% of students enrolled in the U.S. are proficient in science or mathematics. The landscape becomes more troubling among students who traditionally are underrepresented in STEM. For instance, in 2015, fourth grade Black students scored on average 24 points lower than their White counterparts, and 35 points lower than their Asian American counterparts. When data are disaggregated further by sex, underrepresented males, Black males in particular, underperform Black girls on fourth grade mathematics assessment. Additionally, underrepresented males who graduate from high school complete fewer math and science courses compared to their White and Asian peers, and are less likely to take ‘gatekeeper’ courses such as Pre-Calculus and Calculus. As a way to help counteract the underrepresentation of underrepresented males in STEM, St. Elmo Brady STEM Academy (SEBA), an afterschool and Saturday program was developed to expose underrepresented fourth and fifth grade boys to unique, hands-on STEM experiences. What distinguishes SEBA from other afterschool STEM programs is the inclusion of the students’ fathers and underrepresented undergraduate student mentors. SEBA seeks to systematically expose students to STEM disciplines, STEM professionals, and STEM students with a strong focus on engineering and science competency and motivation. Informed by an Integrated STEM Framework, more » the project team seeks to investigate 1) In what ways do the fathers/mentors motivate students to become aware of and interested in STEM careers? 2) To what extent does involvement in SEBA shape the students’ and mentors’ STEM identity? Preliminary data suggest a correlation between the number of mentor contact hours and student STEM identity and a positive value added as a result of father interaction. The success of this program hinges on its ability to bridge the gap between universities and the community. There are plans in place to grow the program by expanding to additional schools. « less
Authors:
; ; ;
Award ID(s):
1760311
Publication Date:
NSF-PAR ID:
10350611
Journal Name:
2018 ASEE Annual Conference & Exposition
Sponsoring Org:
National Science Foundation
More Like this
  1. There is a critical need for more students with engineering and computer science majors to enter into, persist in, and graduate from four-year postsecondary institutions. Increasing the diversity of the workforce by inclusive practices in engineering and science is also a profound identified need. According to national statistics, the largest groups of underrepresented minority students in engineering and science attend U.S. public higher education institutions. Most often, a large proportion of these students come to colleges and universities with unique challenges and needs, and are more likely to be first in their family to attend college. In response to these needs, engineering education researchers and practitioners have developed, implemented and assessed interventions to provide support and help students succeed in college, particularly in their first year. These interventions typically target relatively small cohorts of students and can be managed by a small number of faculty and staff. In this paper, we report on “work in progress” research in a large-scale, first-year engineering and computer science intervention program at a public, comprehensive university using multivariate comparative statistical approaches. Large-scale intervention programs are especially relevant to minority serving institutions that prepare growing numbers of students who are first in their family tomore »attend college and who are also under-resourced, financially. These students most often encounter academic difficulties and come to higher education with challenging experiences and backgrounds. Our studied first-year intervention program, first piloted in 2015, is now in its 5th year of implementation. Its intervention components include: (a) first-year block schedules, (b) project-based introductory engineering and computer science courses, (c) an introduction to mechanics course, which provides students with the foundation needed to succeed in a traditional physics sequence, and (d) peer-led supplemental instruction workshops for calculus, physics and chemistry courses. This intervention study responds to three research questions: (1) What role does the first-year intervention’s components play in students’ persistence in engineering and computer science majors across undergraduate program years? (2) What role do particular pedagogical and cocurricular support structures play in students’ successes? And (3) What role do various student socio-demographic and experiential factors play in the effectiveness of first-year interventions? To address these research questions and therefore determine the formative impact of the firstyear engineering and computer science program on which we are conducting research, we have collected diverse student data including grade point averages, concept inventory scores, and data from a multi-dimensional questionnaire that measures students’ use of support practices across their four to five years in their degree program, and diverse background information necessary to determine the impact of such factors on students’ persistence to degree. Background data includes students’ experiences prior to enrolling in college, their socio-demographic characteristics, and their college social capital throughout their higher education experience. For this research, we compared students who were enrolled in the first-year intervention program to those who were not enrolled in the first-year intervention. We have engaged in cross-sectional 2 data collection from students’ freshman through senior years and employed multivariate statistical analytical techniques on the collected student data. Results of these analyses were interesting and diverse. Generally, in terms of backgrounds, our research indicates that students’ parental education is positively related to their success in engineering and computer science across program years. Likewise, longitudinally (across program years), students’ college social capital predicted their academic success and persistence to degree. With regard to the study’s comparative research of the first-year intervention, our results indicate that students who were enrolled in the first-year intervention program as freshmen continued to use more support practices to assist them in academic success across their degree matriculation compared to students who were not in the first-year program. This suggests that the students continued to recognize the value of such supports as a consequence of having supports required as first-year students. In terms of students’ understanding of scientific or engineering-focused concepts, we found significant impact resulting from student support practices that were academically focused. We also found that enrolling in the first-year intervention was a significant predictor of the time that students spent preparing for classes and ultimately their grade point average, especially in STEM subjects across students’ years in college. In summary, we found that the studied first-year intervention program has longitudinal, positive impacts on students’ success as they navigate through their undergraduate experiences toward engineering and computer science degrees.« less
  2. The persistence and attrition of underrepresented minority (URM) students in science, technology, engineering and mathematics (STEM) continues to remain a steadfast problem in education and the workforce. Research has shown that educators, administrators, and policy makers all play a vital role in shaping the future generation of STEM education, programs and the workforce, however, much of the research is deficient in providing URM student perceptions on how key factors such as student engagement, financial support, higher education preparation and institutional environment all impact their persistence in the STEM pipeline. This study employs qualitative research methods, semi-structured interviews and casual conversations to gain insight on common trends for the persistence of four (2 males, 2 females) URM students that were enrolled in a 2012 Summer Bridge Program at Mississippi State University (MSU), a predominately large white institution (PWI). Within this study, emphasis will be placed on the engineering branch of STEM. The research found that small diverse organizations such as NSBE and IMAGE along with financial support in the form of scholarships and alumni waivers, and pre-freshmen summer engineering programs such as Summer Bridge played a major role in URM student persistence in engineering disciplines.
  3. The STEM Excellence through Engagement in Collaboration, Research, and Scholarship (SEECRS) project at Whatcom Community College is a five-year program aiming to support academically talented students with demonstrated financial need in biology, chemistry, geology, computer science, engineering, and physics. This project is funded by an NSF S-STEM (Scholarships in Science, Technology, Engineering, and Mathematics) grant awarded in January 2017. Through an inclusive and long-range effort, the college identified a strong need for financial and comprehensive supports for STEM students. This project will offer financial, academic, and professional support to three two-year cohorts of students. The SEECRS project aims to utilize a STEM-specific guided pathways approach to strengthen recruitment, retention, and matriculation of STEM students at the community college level. Scholarship recipients will be supported through participation in the SEECRS Scholars Academy, a multi-pronged approach to student support combining elements of community building, faculty mentorship, targeted advising activities, authentic science practice, and social activities. Students are introduced to disciplines of interest through opportunities to engage in course-based undergraduate research experiences (CUREs) in Biology, Chemistry and Engineering courses, funded summer research opportunities, and seminars presented by STEM professionals. Communities of practice will be nurtured through the introduction of cohort building and facultymore »mentorship. Cohort development starts with a required two-credit course for all scholars that emphasizes STEM identity development, specifically focusing on identifying and coping with the ways non-dominant individuals (racial/ethnic minorities, non-male gender, lower socioeconomic status, first-generation, 2-year community college vs. 4-year institutions) are made to feel as outsiders in STEM. Each SEECRS scholar is paired with a faculty mentor who engages in ongoing mentor training. The project evaluation will determine the efficacy of the project activities in achieving their intended outcomes. Specifically, we will collect data to answer the research question: To what extent can a guided pathways approach provide a coordinated and supported STEM experience at Whatcom Community College that: (1) increases student success, and (2) positively shifts students’ STEM self-identity? The evaluation will employ a quasi-experimental research design, specifically a pretest-posttest design with a matched comparison group. Our first cohort of 14 students was selected over two application rounds (winter and summer 2017). We awarded ten full scholarships and four half-scholarships based on financial need data. Cohort demographics of note compared to institutional percentages are: females (64% vs. 57%), Hispanic (14% vs. 17%), African American (7% vs. 2%), white (79% vs. 66%), first generation college bound (43% vs. 37%). The cohort is comprised of six students interested in engineering, six in biology, and one each in geology and environmental sciences. With increased communication between the project team, our Financial Aid office, Entry and Advising, high school outreach, and the Title III grant-funded Achieve, Inspire, Motivate (AIM) Program, as well as a longer advertising time, we anticipate significantly enhancing our applicant pool for the next cohort. The results and lessons learned from our first year of implementation will be presented.« less
  4. This analysis reveals the informal instrumental and socio-emotional support that non-traditional (e.g. Latinx, Black, Indigenous, lower-income, and first-generation) college students receive from family members to combat experiences of marginalization and contribute towards their self-efficacy. Family support can be particularly important for underrepresented undergraduate Science, Technology, Engineering, and Math (STEM) students who have been shown to have higher risks of dropping out of their program and experience lower levels of success indicators (e.g. sense of belonging, self-concept, and STEM identity) compared to their white and Asian peers. Therefore, it is important to further investigate the nuances of family support contributing to non-traditional student retention and success. Utilizing a phenomenological approach, we used open-ended questions during focus groups with community college transfer students to gain their experiences with challenges and feelings of belonging in college and STEM. This article investigates the value family support holds for students in surviving STEM challenges by extending family to include romantic partners and extended family as well as applying the funds of knowledge framework to community college transfer students.
  5. Undergraduate mathematics education can be experienced in discouraging and marginalizing ways among Black students, Latin students, and white women. Precalculus and calculus courses, in particular, operate as gatekeepers that contribute to racialized and gendered attrition in persistence with mathematics coursework and pursuits in STEM (science, technology, engineering, and mathematics). However, student perceptions of instruction in these introductory mathematics courses have yet to be systematically examined as a contributor to such attrition. This paper presents findings from a study of 20 historically marginalized students’ perceptions of precalculus and calculus instruction to document features that they found discouraging and marginalizing. Our analysis revealed how students across different race-gender identities reported stereotyping as well as issues of representation in introductory mathematics classrooms and STEM fields as shaping their perceptions of instruction. These perceptions pointed to the operation of three racialized and gendered mechanisms in instruction: (i) creating differential opportunities for participation and support, (ii) limiting support from same-race, same-gender peers to manage negativity in instruction, and (iii) activating exclusionary ideas about who belongs in STEM fields. We draw on our findings to raise implications for research and practice in undergraduate mathematics education.