skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Transient ice loss in the Patagonia Icefields during the 2015–2016 El Niño event
Abstract The Patagonia Icefields (PIF) are the largest non-polar ice mass in the southern hemisphere. The icefields cover an area of approximately 16,500 km 2 and are divided into the northern and southern icefields, which are ~ 4000 km 2 and ~ 12,500 km 2 , respectively. While both icefields have been losing mass rapidly, their responsiveness to various climate drivers, such as the El Niño-Southern Oscillation, is not well understood. Using the elastic response of the earth to loading changes and continuous GPS data we separated and estimated ice mass changes observed during the strong El Niño that started in 2015 from the complex hydrological interactions occurring around the PIF. During this single event, our mass balance estimates show that the northern icefield lost ~ 28 Gt of mass while the southern icefield lost ~ 12 Gt. This is the largest ice loss event in the PIF observed to date using geodetic data.  more » « less
Award ID(s):
1745074
PAR ID:
10350641
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
12
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Coral oxygen isotopes (δ18O) from the central equatorial Pacific provide monthly resolved records of El Niño‐Southern Oscillation activity over past centuries to millennia. However, calibration studies usingin situdata to assess the relative contributions of warming and freshening to coral δ18O records are exceedingly rare. Furthermore, the fidelity of coral δ18O records under the most severe thermal stress events is difficult to assess. Here, we present six coral δ18O records andin situtemperature, salinity, and seawater δ18O data from Kiritimati Island (2°N, 157°W) spanning the very strong 2015/16 El Niño event. Local sea surface temperature (SST) anomalies of +2.4 ± 0.4°C and seawater δ18O anomalies of −0.19 ± 0.02‰ contribute to the observed coral δ18O anomalies of −0.58 ± 0.05‰, consistent with a ∼70% contribution from SST and ∼30% from seawater δ18O. Our results demonstrate that Kiritimati coral δ18O records can provide reliable reconstructions even during the largest class of El Niño events. 
    more » « less
  2. Abstract Climate change is contributing to rapid changes in lake ice cover across the Northern Hemisphere, thereby impacting local communities and ecosystems. Using lake ice cover time‐series spanning over 87 yr for 43 lakes across the Northern Hemisphere, we found that the interannual variability in ice duration, measured as standard deviation, significantly increased in only half of our studied lakes. We observed that the interannual variability in ice duration peaked when lakes were, on average, covered by ice for about 1 month, while both longer and shorter long‐term mean ice cover duration resulted in lower interannual variability in ice duration. These results demonstrate that the ice cover duration can become so short that the interannual variability rapidly declines. The interannual variability in ice duration showed a strong dependency on global temperature anomalies and teleconnections, such as the North Atlantic Oscillation and El Niño–Southern Oscillation. We conclude that many lakes across the Northern Hemisphere will experience a decline in interannual ice cover variability and shift to open water during the winter under a continued global warming trend which will affect lake biological, cultural, and economic processes. 
    more » « less
  3. Climate change is causing pronounced shifts during winter in the US, including shortening the snow season, reducing snowpack, and altering the timing and volume of snowmelt-related runoff. These changes in winter precipitation patterns affect in-stream freeze-thaw cycles, including ice and snow cover, and can trigger direct and indirect effects on in-stream physical, chemical, and biological processes in ~60% of river basins in the Northern Hemisphere. We used high-resolution, multi-parameter data collected in a headwater stream and its local environment (climate and soil) to determine interannual variability in physical, chemical, and biological signals in a montane stream during the winter of an El Niño and a La Niña year. We observed ~77% greater snow accumulation during the El Niño year, which caused the formation of an ice dam that shifted the system from a primarily lotic to a lentic environment. Water chemistry and stream metabolism parameters varied widely between years. They featured anoxic conditions lasting over a month, with no observable gross primary production (GPP) occurring under the ice and snow cover in the El Niño year. In contrast, dissolved oxygen and GPP remained relatively high during the winter months of the La Niña year. These redox and metabolic changes driven by changes in winter precipitation have significant implications for water chemistry and biological functioning beyond the winter. Our study suggests that as snow accumulation and hydrologic conditions shift during the winter due to climate change, hot-spots and hot-moments for biogeochemical processing may be reduced, with implications for the downstream movement of nutrients and transported materials. 
    more » « less
  4. null (Ed.)
    Abstract The structure and variations of the North Equatorial Counter Current (NECC) in the far western Pacific Ocean during 2014-2016 are investigated using repeated in-situ hydrographic data, altimeter data, Argo data, and reanalysis data. The NECC shifted ~1 degree southward and intensified significantly with its transport exceeding 40 Sv (1 Sv = 10 6 m 3 s -1 ), nearly double its climatology value, during the developing phase of the 2015/16 El Niño event. Observations show that the 2015/16 El Niño exerted a comparable impact on the NECC with that of the extreme 1997/98 El Niño in the far western Pacific Ocean. Baroclinic instability provided the primary energy source for the eddy kinetic energy (EKE) in the 2015/16 El Niño, which differs from the traditional understanding of the energy source of EKE as barotropic instability in low latitude ocean. The enhanced vertical shear and the reduced density jump between the NECC layer and the subsurface North Equatorial Subsurface Current (NESC) layer renders the NECC–NESC system baroclinically unstable in the western Pacific Ocean during El Niño developing phase. The eddy-mean flow interactions here are diverse associated with various states of the El Niño Southern Oscillation (ENSO). 
    more » « less
  5. Abstract The relationship of upper tropospheric jet variability to El Niño / Southern Oscillation (ENSO) in reanalysis datasets is analyzed for 1979–2018, revealing robust regional and seasonal variability. Tropical jets associated with monsoons and the Walker circulation are weaker and the zonal mean subtropical jet shifts equatorward in both hemispheres during El Niño, consistent with previous findings. Regional and seasonal variations are analyzed separately for subtropical and polar jets. The subtropical jet shifts poleward during El Niño over the NH eastern Pacific in DJF, and in some SH regions in MAMand SON. Subtropical jet altitudes increase during El Niño, with significant changes in the zonal mean in the NH and during summer/fall in the SH. Though zonal mean polar jet correlations with ENSO are rarely significant, robust regional/seasonal changes occur: The SH polar jet shifts equatorward during El Niño over Asia and the western Pacific in DJF, and poleward over the eastern Pacific in JJA and SON. Polar jets are weaker (stronger) during El Niño in the western (eastern) hemisphere, especially in the SH; conversely, subtropical jets are stronger (weaker) in the western (eastern) hemisphere during El Niño in winter and spring; these opposing changes, along with an anticorrelation between subtropical and polar jet windspeed, reinforce subtropical/polar jet strength differences during El Niño, and suggest ENSO-related covariability of the jets. ENSO-related jet latitude, altitude, and windspeed changes can reach 4(3)°, 0.6(0.3) km, and 6(3) ms −1 , respectively, for the subtropical (polar) jets. 
    more » « less