skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Realization of flexible AlGaN/GaN HEMT by laser liftoff
Abstract We demonstrate fully fabricated AlGaN/GaN high electron mobility transistors (HEMTs) transferred from sapphire to copper tape on flexible polyethylene terephthalate using 193 nm excimer laser liftoff (LLO). The heterojunction is structurally intact after LLO, leading to preserved electron mobility μ n ∼1630 cm 2 V −1 s −1 and carrier concentration n s ∼10 13 cm −2 . The maximum drain saturation current decreased by ∼18% after transfer, which is a lower reduction than other reported transfer methods. The drain current of this flexible HEMT increased monotonically under tensile stress applied using a convex-shaped plate, while the threshold voltage shifted more negative in quantitative agreement with the expected piezoelectric charge for an intact heterojunction.  more » « less
Award ID(s):
1831954
PAR ID:
10350790
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Applied Physics Express
Volume:
15
Issue:
7
ISSN:
1882-0778
Page Range / eLocation ID:
071011
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Amorphous oxide semiconductors (AOSs), specifically those based on ternary cation systems such as Ga-, Si-, and Hf-doped InZnO, have emerged as promising material candidates for application in next-gen transparent electronic and optoelectronic devices. Third cation-doping is a common method used during the manufacturing of amorphous oxide thin film transistors (TFTs), primarily with the intention of suppressing carrier generation during the fabrication of the channel layer of a transistor. However, the incorporation of a third cation species has been observed to negatively affect the carrier transport properties of the thin film, as it may act as an additional scattering center and subsequently lower the carrier mobility from ∼20–40 cm 2 V −1 s −1 of In 2 O 3 or a binary cation system ( i.e. , InZnO) to ∼1–10 cm 2 V −1 s −1 . This study investigates the structural, electrical, optoelectronic, and chemical properties of the ternary cation material system, InAlZnO (IAZO). The optimized carrier mobility (Hall Effect) of Al-doped InZnO is shown to remain as high as ∼25–45 cm 2 V −1 s −1 . Furthermore, Al incorporation in InZnO proves to enhance the amorphous phase stability under thermal stresses when compared to baseline InZnO films. Thin film transistors integrating optimized IAZO as the channel layer are shown to demonstrate promisingly high field effect mobilities (∼18–20 cm 2 V −1 s −1 ), as well as excellent drain current saturation and high drain current on/off ratios (>10 7 ). The high mobility and improved amorphous phase stability suggest strong potential for IAZO incorporation in the next generation of high performance and sustainable optoelectronic devices such as transparent displays. 
    more » « less
  2. Abstract A novel n‐type copolymer dopant polystyrene–poly(4‐vinyl‐N‐hexylpyridinium fluoride) (PSpF) with fluoride anions is designed and synthesized by reversible addition–fragmentation chain transfer (RAFT) polymerization. This is thought to be the first polymeric fluoride dopant. Electrical conductivity of 4.2 S cm–1and high power factor of 67 µW m–1K–2are achieved for PSpF‐doped polymer films, with a corresponding decrease in thermal conductivity as the PSpF concentration is increased, giving the highest ZT of 0.1. An especially high electrical conductivity of 58 S cm–1at 88 °C and outstanding thermal stability are recorded. Further, organic transistors of PSpF‐doped thin films exhibit high electron mobility and Hall mobility of 0.86 and 1.70 cm2V–1s–1, respectively. The results suggest that polystyrene–poly(vinylpyridinium) salt copolymers with fluoride anions are promising for high‐performance n‐type all‐polymer thermoelectrics. This work provides a new way to realize organic thermoelectrics with high conductivity relative to the Seebeck coefficient, high power factor, thermal stability, and broad processing window. 
    more » « less
  3. Abstract As known, n‐type inorganic semiconductor nanoparticles such as zinc oxide nanoparticles have been explored in various sensing applications, which demand high‐density electronic elements placement for rapid operation. Herein, high‐resolution designs of conductive channels of noble metal‐doped zinc oxide nanoparticles is demonstrated using an engraving transfer printing process and silver metal doping approach. Such thin‐film transistors with reduced feature size to 2 µm fabricated exhibited significantly enhanced electron mobility up 3.46 × 10−2cm2V−1s−1and light sensitivity. Furthermore, the integration of this micropatterning technology and metal doping in thin‐film transistors is utilized for control of current–voltage characteristics under the ultraviolet radiation with high sensitivity. It is suggested that this approach to design of doped inorganic nanoparticle channels paves the way for high‐density thin‐film transistors suitable for optoelectronic circuit, UV photodetectors and neuromorphic computing systems. 
    more » « less
  4. Room temperature 6 μm intraband cascade electroluminescence (EL) is demonstrated with lightly n-doped HgTe colloidal quantum dots of ∼8 nm diameter deposited on interdigitated electrodes in a metal–insulator–metal device. With quantum dot films of ∼150 nm thickness made by solid-state-ligand-exchange, the devices emit at 1600 cm−1 (6.25 μm), with a spectral width of 200 cm−1, determined by the overlap of the 1Se–1Pe intraband transition of the quantum dots and the substrate photonic resonance. At the maximum current used of 20 mA, the bias was 30 V, the external quantum efficiency was 2.7%, and the power conversion efficiency was 0.025%. Adding gold nano-antennas between the electrodes broadened the emission and increased the quantum efficiency to 4.4% and the power efficiency to 0.036%. For these films, the doping was about 0.1 electron/dot, the electron mobility was 0.02 cm2 V−1 s−1, and the maximum current density was 0.04 kA cm−2. Higher mobility films made by solution ligand exchange show a 20-fold increase in current density and a 10-fold decrease in EL efficiencies. Electroluminescence with weak doping is interesting for eventually achieving electrically driven stimulated emission, and the requirements for population inversion and lasing are discussed. 
    more » « less
  5. Abstract New deposition techniques for amorphous oxide semiconductors compatible with silicon back end of line manufacturing are needed for 3D monolithic integration of thin‐film electronics. Here, three atomic layer deposition (ALD) processes are compared for the fabrication of amorphous zinc tin oxide (ZTO) channels in bottom‐gate, top‐contact n‐channel transistors. As‐deposited ZTO films, made by ALD at 150–200 °C, exhibit semiconducting, enhancement‐mode behavior with electron mobility as high as 13 cm2V−1s−1, due to a low density of oxygen‐related defects. ZTO deposited at 200 °C using a hybrid thermal‐plasma ALD process with an optimal tin composition of 21%, post‐annealed at 400 °C, shows excellent performance with a record high mobility of 22.1 cm2V–1s–1and a subthreshold slope of 0.29 V dec–1. Increasing the deposition temperature and performing post‐deposition anneals at 300–500 °C lead to an increased density of the X‐ray amorphous ZTO film, improving its electrical properties. By optimizing the ZTO active layer thickness and using a high‐kgate insulator (ALD Al2O3), the transistor switching voltage is lowered, enabling electrical compatibility with silicon integrated circuits. This work opens the possibility of monolithic integration of ALD ZTO‐based thin‐film electronics with silicon integrated circuits or onto large‐area flexible substrates. 
    more » « less