Abstract Organic doping is widely used for defining the majority charge carriers of organic thin films, tuning the Fermi level, and improving and stabilizing the performance of organic light‐emitting diodes and organic solar cells. However, in contrast to inorganic semiconductors, the doping concentrations commonly used are quite high (in the wt% range). Such high concentrations not only limit the scope of doping in organic field‐effect transistors (OFETs), but also limit the doping process itself resulting in a low doping efficiency. Here, the mechanism of doping at ultralow doping concentrations is studied. Doped C60metal‐oxide‐semiconductor (MOS) junctions are used to study doping at the 100 ppm level. With the help of a small‐signal drift‐diffusion model, it is possible to disentangle effects of traps at the gate dielectric/organic semiconductor interface from effects of doping and to determine the doping efficiency and activation energy of the doping process. Doped C60OFETs with an ultralow operation voltage of 800 mV and an excellent on/off ratio of up to 107are realized. The devices have low subthreshold swing in the range of 80 mV dec−1and a large transconductance of up to 8 mS mm−1. 
                        more » 
                        « less   
                    This content will become publicly available on February 2, 2026
                            
                            Micro‐Engraving UV‐Sensitive Thin‐Film Transistor from Metal–Metal Oxide Nanoparticles with Band‐Gap Engineering
                        
                    
    
            Abstract As known, n‐type inorganic semiconductor nanoparticles such as zinc oxide nanoparticles have been explored in various sensing applications, which demand high‐density electronic elements placement for rapid operation. Herein, high‐resolution designs of conductive channels of noble metal‐doped zinc oxide nanoparticles is demonstrated using an engraving transfer printing process and silver metal doping approach. Such thin‐film transistors with reduced feature size to 2 µm fabricated exhibited significantly enhanced electron mobility up 3.46 × 10−2cm2V−1s−1and light sensitivity. Furthermore, the integration of this micropatterning technology and metal doping in thin‐film transistors is utilized for control of current–voltage characteristics under the ultraviolet radiation with high sensitivity. It is suggested that this approach to design of doped inorganic nanoparticle channels paves the way for high‐density thin‐film transistors suitable for optoelectronic circuit, UV photodetectors and neuromorphic computing systems. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2203806
- PAR ID:
- 10598422
- Publisher / Repository:
- Adv. Electronic Materials
- Date Published:
- Journal Name:
- Advanced Electronic Materials
- ISSN:
- 2199-160X
- Subject(s) / Keyword(s):
- TFT UV-sensitive
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract New deposition techniques for amorphous oxide semiconductors compatible with silicon back end of line manufacturing are needed for 3D monolithic integration of thin‐film electronics. Here, three atomic layer deposition (ALD) processes are compared for the fabrication of amorphous zinc tin oxide (ZTO) channels in bottom‐gate, top‐contact n‐channel transistors. As‐deposited ZTO films, made by ALD at 150–200 °C, exhibit semiconducting, enhancement‐mode behavior with electron mobility as high as 13 cm2V−1s−1, due to a low density of oxygen‐related defects. ZTO deposited at 200 °C using a hybrid thermal‐plasma ALD process with an optimal tin composition of 21%, post‐annealed at 400 °C, shows excellent performance with a record high mobility of 22.1 cm2V–1s–1and a subthreshold slope of 0.29 V dec–1. Increasing the deposition temperature and performing post‐deposition anneals at 300–500 °C lead to an increased density of the X‐ray amorphous ZTO film, improving its electrical properties. By optimizing the ZTO active layer thickness and using a high‐kgate insulator (ALD Al2O3), the transistor switching voltage is lowered, enabling electrical compatibility with silicon integrated circuits. This work opens the possibility of monolithic integration of ALD ZTO‐based thin‐film electronics with silicon integrated circuits or onto large‐area flexible substrates.more » « less
- 
            Abstract Source/Drain extension doping is crucial for minimizing the series resistance of the ungated channel and reducing the contact resistance of field‐effect transistors (FETs) in complementary metal–oxide–semiconductor (CMOS) technology. 2D semiconductors, such as MoS2and WSe2, are promising channel materials for beyond‐silicon CMOS. A key challenge is to achieve extension doping for 2D monolayer FETs without damaging the atomically thin material. This work demonstrates extension doping with low‐resistance contacts for monolayer WSe2p‐FETs. Self‐limiting oxidation transforms a bilayer WSe2into a hetero‐bilayer of a high‐work‐function WOxSeyon a monolayer WSe2. Then, damage‐free nanolithography defines an undoped nano‐channel, preserving the high on‐current of WOxSey‐doped FETs while significantly improving their on/off ratio. The insertion of an amorphous WOxSeyinterlayer under the contacts achieves record‐low contact resistances for monolayer WSe2over a hole density range of 1012to 1013cm−2(1.2 ± 0.3 kΩ µm at 1013cm−2). The WOxSey‐doped extension exhibits a sheet resistance as low as 10 ± 1 kΩ □−1. Monolayer WSe2p‐FETs with sub‐50 nm channel lengths reach a maximum drain current of 154 µA µm−1with an on/off ratio of 107–108. These results define strategies for nanometer‐scale selective‐area doping in 2D FETs and other 2D architectures.more » « less
- 
            The field-effect electron mobility of aqueous solution-processed indium gallium oxide (IGO) thin-film transistors (TFTs) is significantly enhanced by polyvinyl alcohol (PVA) addition to the precursor solution, a >70-fold increase to 7.9 cm2/Vs. To understand the origin of this remarkable phenomenon, microstructure, electronic structure, and charge transport of IGO:PVA film are investigated by a battery of experimental and theoretical techniques, including In K-edge and Ga K-edge extended X-ray absorption fine structure (EXAFS); resonant soft X-ray scattering (R-SoXS); ultraviolet photoelectron spectroscopy (UPS); Fourier transform-infrared (FT-IR) spectroscopy; time-of-flight secondary-ion mass spectrometry (ToF-SIMS); composition-/processing-dependent TFT properties; high-resolution solid-state1H,71Ga, and115In NMR spectroscopy; and discrete Fourier transform (DFT) analysis with ab initio molecular dynamics (MD) liquid-quench simulations. The71Ga{1H} rotational-echo double-resonance (REDOR) NMR and other data indicate that PVA achieves optimal H doping with a Ga···H distance of ∼3.4 Å and conversion from six- to four-coordinate Ga, which together suppress deep trap defect localization. This reduces metal-oxide polyhedral distortion, thereby increasing the electron mobility. Hydroxyl polymer doping thus offers a pathway for efficient H doping in green solvent-processed metal oxide films and the promise of high-performance, ultra-stable metal oxide semiconductor electronics with simple binary compositions.more » « less
- 
            null (Ed.)Amorphous oxide semiconductors (AOSs), specifically those based on ternary cation systems such as Ga-, Si-, and Hf-doped InZnO, have emerged as promising material candidates for application in next-gen transparent electronic and optoelectronic devices. Third cation-doping is a common method used during the manufacturing of amorphous oxide thin film transistors (TFTs), primarily with the intention of suppressing carrier generation during the fabrication of the channel layer of a transistor. However, the incorporation of a third cation species has been observed to negatively affect the carrier transport properties of the thin film, as it may act as an additional scattering center and subsequently lower the carrier mobility from ∼20–40 cm 2 V −1 s −1 of In 2 O 3 or a binary cation system ( i.e. , InZnO) to ∼1–10 cm 2 V −1 s −1 . This study investigates the structural, electrical, optoelectronic, and chemical properties of the ternary cation material system, InAlZnO (IAZO). The optimized carrier mobility (Hall Effect) of Al-doped InZnO is shown to remain as high as ∼25–45 cm 2 V −1 s −1 . Furthermore, Al incorporation in InZnO proves to enhance the amorphous phase stability under thermal stresses when compared to baseline InZnO films. Thin film transistors integrating optimized IAZO as the channel layer are shown to demonstrate promisingly high field effect mobilities (∼18–20 cm 2 V −1 s −1 ), as well as excellent drain current saturation and high drain current on/off ratios (>10 7 ). The high mobility and improved amorphous phase stability suggest strong potential for IAZO incorporation in the next generation of high performance and sustainable optoelectronic devices such as transparent displays.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
