Persistent homology is used for computing topological features of a space at different spatial resolutions. It is one of the main tools from computational topology that is applied to the problems of data analysis. Despite several attempts to reduce its complexity, persistent homology remains expensive in both time and space. These limits are such that the largest data sets to which the method can be applied have the number of points of the order of thousands in R^3. This paper explores a technique intended to reduce the number of data points while preserving the salient topological features of the data. The proposed technique enables the computation of persistent homology on a reduced version of the original input data without affecting significant components of the output. Since the run time of persistent homology is exponential in the number of data points, the proposed data reduction method facilitates the computation in a fraction of the time required for the original data. Moreover, the data reduction method can be combined with any existing technique that simplifies the computation of persistent homology. The data reduction is performed by creating small groups of \emph{similar} data points, called nano-clusters, and then replacing the points within each nano-cluster with its cluster center. The persistence homology of the reduced data differs from that of the original data by an amount bounded by the radius of the nano-clusters. The theoretical analysis is backed by experimental results showing that persistent homology is preserved by the proposed data reduction technique.
more »
« less
A Survey on the High Performance Computation of Persistent Homology
Persistent Homology is a computational method of data mining in the field of Topological Data Analysis. Large-scale data analysis with persistent homology is computationally expensive and memory intensive. The performance of persistent homology has been rigorously studied to optimize data encoding and intermediate data structures for high-performance computation. This paper provides an application-centric survey of the High-Performance Computation of Persistent Homology. Computational topology concepts are reviewed and detailed for a broad data science and engineering audience.
more »
« less
- Award ID(s):
- 1909096
- PAR ID:
- 10350939
- Date Published:
- Journal Name:
- IEEE Transactions on Knowledge and Data Engineering
- ISSN:
- 1041-4347
- Page Range / eLocation ID:
- 1 to 1
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Persistent homology is a method of data analysis that is based in the mathematical field of topology. Unfortunately, the run-time and memory complexities associated with computing persistent homology inhibit general use for the analysis of big data. For example, the best tools currently available to compute persistent homology can process only a few thousand data points in R^3. Several studies have proposed using sampling or data reduction methods to attack this limit. While these approaches enable the computation of persistent homology on much larger data sets, the methods are approximate. Furthermore, while they largely preserve the results of large topological features, they generally miss reporting information about the small topological features that are present in the data set. While this abstraction is useful in many cases, there are data analysis needs where the smaller features are also significant (e.g., brain artery analysis). This paper explores a combination of data reduction and data partitioning to compute persistent homology on big data that enables the identification of both large and small topological features from the input data set. To reduce the approximation errors that typically accompany data reduction for persistent homology, the described method also includes a mechanism of ``upscaling'' the data circumscribing the large topological features that are computed from the sampled data. The designed experimental method provides significant results for improving the scale at which persistent homology can be performedmore » « less
-
Persistent homology (PH) matrix reduction is an important tool for data analytics in many application areas. Due to its highly irregular execution patterns in computation, it is challenging to gain high efficiency in parallel processing for increasingly large data sets. In this paper, we introduce HYPHA, a HYbrid Persistent Homology matrix reduction Accelerator, to make parallel processing highly efficient on both GPU and multicore. The essential foundation of our algorithm design and implementation is the separation of SIMT and MIMD parallelisms in PH matrix reduction computation. With such a separation, we are able to perform massive parallel scanning operations on GPU in a super-fast manner, which also collects rich information from an input boundary matrix for further parallel reduction operations on multicore with high efficiency. The HYPHA framework may provide a general purpose guidance to high performance computing on multiple hardware accelerators. To our best knowledge, HYPHA achieves the highest performance in PH matrix reduction execution. Our experiments show speedups of up to 116x against the standard PH algorithm. Compared to the state-of-the-art parallel PH software packages, such as PHAT and DIPHA, HYPHA outperforms their fastest PH matrix reduction algorithms by factor up to 2.3x.more » « less
-
Persistent topological Laplacians constitute a new class of tools in topological data analysis (TDA). They are motivated by the necessity to address challenges encountered in persistent homology when handling complex data. These Laplacians combine multiscale analysis with topological techniques to characterize the topological and geometrical features of functions and data. Their kernels fully retrieve the topological invariants of corresponding persistent homology, while their non-harmonic spectra provide supplementary information. Persistent topological Laplacians have demonstrated superior performance over persistent homology in the analysis of large-scale protein engineering datasets. In this survey, we offer a pedagogical review of persistent topological Laplacians formulated in various mathematical settings, including simplicial complexes, path complexes, flag complexes, digraphs, hypergraphs, hyperdigraphs, cellular sheaves, and N-chain complexes.more » « less
-
Persistent Homology (PH) is a method of Topological Data Analysis that analyzes the topological structure of data to help data scientists infer relationships in the data to assist in informed decision- making. A significant component in the computation of PH is the construction and use of a complex that represents the topological structure of the data. Some complex types are fast to construct but space inefficient whereas others are costly to construct and space efficient. Unfortunately, existing complex types are not both fast to construct and compact. This paper works to increase the scope of PH to support the computation of low dimensional homologies (H0 –H10 ) in high-dimension, big data. In particular, this paper exploits the desirable properties of the Vietoris–Rips Complex (VR-Complex) and the Delaunay Complex in order to construct a sparsified complex. The VR-Complex uses a distance matrix to quickly generate a complex up to the desired homology dimension. In contrast, the Delaunay Complex works at the dimensionality of the data to generate a sparsified complex. While construction of the VR-Complex is fast, its size grows exponentially by the size and dimension of the data set; in contrast, the Delaunay complex is significantly smaller for any given data dimension. However, its construction requires the computation of a Delaunay Triangulation that has high computational complexity. As a result, it is difficult to construct a Delaunay Complex for data in dimensions d > 6 that contains more than a few hundred points. The techniques in this paper enable the computation of topological preserving sparsification of k-Simplices (where k ≪ d) to quickly generate a reduced sparsified complex sufficient to compute homologies up to k-subspace, irrespective of the data dimensionality d.more » « less
An official website of the United States government

