The performance of object detection models in adverse weather conditions remains a critical challenge for intelligent transportation systems. Since advancements in autonomous driving rely heavily on extensive datasets, which help autonomous driving systems be reliable in complex driving environments, this study provides a comprehensive dataset under diverse weather scenarios like rain, haze, nighttime, or sun flares and systematically evaluates the robustness of state-of-the-art deep learning-based object detection frameworks. Our Adverse Driving Conditions Dataset features eight single weather effects and four challenging mixed weather effects, with a curated collection of 50,000 traffic images for each weather effect. State-of-the-art object detection models are evaluated using standard metrics, including precision, recall, and IoU. Our findings reveal significant performance degradation under adverse conditions compared to clear weather, highlighting common issues such as misclassification and false positives. For example, scenarios like haze combined with rain cause frequent detection failures, highlighting the limitations of current algorithms. Through comprehensive performance analysis, we provide critical insights into model vulnerabilities and propose directions for developing weather-resilient object detection systems. This work contributes to advancing robust computer vision technologies for safer and more reliable transportation in unpredictable real-world environments.
more »
« less
Ithaca365: Dataset and Driving Perception under Repeated and Challenging Weather Conditions
Advances in perception for self-driving cars have accel- erated in recent years due to the availability of large-scale datasets, typically collected at specific locations and under nice weather conditions. Yet, to achieve the high safety re- quirement, these perceptual systems must operate robustly under a wide variety of weather conditions including snow and rain. In this paper, we present a new dataset to enable robust autonomous driving via a novel data collection pro- cess — data is repeatedly recorded along a 15 km route un- der diverse scene (urban, highway, rural, campus), weather (snow, rain, sun), time (day/night), and traffic conditions (pedestrians, cyclists and cars). The dataset includes im- ages and point clouds from cameras and LiDAR sensors, along with high-precision GPS/INS to establish correspon- dence across routes. The dataset includes road and object annotations using amodal masks to capture partial occlu- sions and 3D bounding boxes. We demonstrate the unique- ness of this dataset by analyzing the performance of base- lines in amodal segmentation of road and objects, depth estimation, and 3D object detection. The repeated routes opens new research directions in object discovery, contin- ual learning, and anomaly detection. Link to Ithaca365: https://ithaca365.mae.cornell.edu/
more »
« less
- Award ID(s):
- 2107161
- PAR ID:
- 10350988
- Date Published:
- Journal Name:
- Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Self-driving cars must detect other traffic partici- pants like vehicles and pedestrians in 3D in order to plan safe routes and avoid collisions. State-of-the-art 3D object detectors, based on deep learning, have shown promising accuracy but are prone to over-fit domain idiosyncrasies, making them fail in new environments—a serious problem for the robustness of self-driving cars. In this paper, we propose a novel learning approach that reduces this gap by fine-tuning the detector on high-quality pseudo-labels in the target domain – pseudo- labels that are automatically generated after driving based on replays of previously recorded driving sequences. In these replays, object tracks are smoothed forward and backward in time, and detections are interpolated and extrapolated— crucially, leveraging future information to catch hard cases such as missed detections due to occlusions or far ranges. We show, across five autonomous driving datasets, that fine-tuning the object detector on these pseudo-labels substantially reduces the domain gap to new driving environments, yielding strong improvements detection reliability and accuracy.more » « less
-
Various techniques in computer vision have been proposed for water level detection. However, existing methods face challenges during adverse conditions including snow, fog, rain, and nighttime. In this paper, we introduce a novel approach that analyzes images for water level detection by incorporating a deblurring process to increase image clarity. By employing real-time object detection technique YOLOv5, we show that the proposed approach can achieve significantly improved precision, during both daytime and nighttime under under challenging weather circumstances.more » « less
-
: In the challenging realm of object detection under rainy conditions, visual distortions significantly hinder accuracy. This paper introduces Rain-Adapt Faster RCNN (RAF-RCNN), an innovative end-to-end approach that merges advanced deraining techniques with robust object detection. Our method integrates rain removal and object detection into a single process, using a novel feature transfer learning approach for enhanced robustness. By employing the Extended Area Structural Discrepancy Loss (EASDL), RAF-RCNN enhances feature map evaluation, leading to significant performance improvements. In quantitative testing of the Rainy KITTI dataset, RAF-RCNN achieves a mean Average Precision (mAP) of 51.4% at IOU [0.5, 0.95], exceeding previous methods by at least 5.5%. These results demonstrate RAF-RCNN's potential to significantly enhance perception systems in intelligent transportation, promising substantial improvements in reliability and safety for autonomous vehicles operating in varied weather conditions.more » « less
-
In this paper, we meticulously examine the robustness of computer vision object detection frameworks within the intricate realm of real-world traffic scenarios, with a particular emphasis on challenging adverse weather conditions. Conventional evaluation methods often prove inadequate in addressing the complexities inherent in dynamic traffic environments—an increasingly vital consideration as global advancements in autonomous vehicle technologies persist. Our investigation delves specifically into the nuanced performance of these algorithms amidst adverse weather conditions like fog, rain, snow, sun flare, and more, acknowledging the substantial impact of weather dynamics on their precision. Significantly, we seek to underscore that an object detection framework excelling in clear weather may encounter significant challenges in adverse conditions. Our study incorporates in-depth ablation studies on dual modality architectures, exploring a range of applications including traffic monitoring, vehicle tracking, and object tracking. The ultimate goal is to elevate the safety and efficiency of transportation systems, recognizing the pivotal role of robust computer vision systems in shaping the trajectory of future autonomous and intelligent transportation technologies.more » « less
An official website of the United States government

