A significant challenge in the field of object detection lies in the system's performance under non-ideal imaging conditions, such as rain, fog, low illumination, or raw Bayer images that lack ISP processing. Our study introduces "Feature Corrective Transfer Learning", a novel approach that leverages transfer learning and a bespoke loss function to facilitate the end-to-end detection of objects in these challenging scenarios without the need to convert non-ideal images into their RGB counterparts. In our methodology, we initially train a comprehensive model on a pristine RGB image dataset. Subsequently, non-ideal images are processed by comparing their feature maps against those from the initial ideal RGB model. This comparison employs the Extended Area Novel Structural Discrepancy Loss (EANSDL), a novel loss function designed to quantify similarities and integrate them into the detection loss. This approach refines the model's ability to perform object detection across varying conditions through direct feature map correction, encapsulating the essence of Feature Corrective Transfer Learning. Experimental validation on variants of the KITTI dataset demonstrates a significant improvement in mean Average Precision (mAP), resulting in a 3.8-8.1% relative enhancement in detection under non-ideal conditions compared to the baseline model, and a less marginal performance difference within 1.3% of the mAP@[0.5:0.95] achieved under ideal conditions by the standard Faster RCNN algorithm.
more »
« less
RAF-RCNN: Adaptive Feature Transfer from Clear to Rainy Conditions for Improved Object Detection
: In the challenging realm of object detection under rainy conditions, visual distortions significantly hinder accuracy. This paper introduces Rain-Adapt Faster RCNN (RAF-RCNN), an innovative end-to-end approach that merges advanced deraining techniques with robust object detection. Our method integrates rain removal and object detection into a single process, using a novel feature transfer learning approach for enhanced robustness. By employing the Extended Area Structural Discrepancy Loss (EASDL), RAF-RCNN enhances feature map evaluation, leading to significant performance improvements. In quantitative testing of the Rainy KITTI dataset, RAF-RCNN achieves a mean Average Precision (mAP) of 51.4% at IOU [0.5, 0.95], exceeding previous methods by at least 5.5%. These results demonstrate RAF-RCNN's potential to significantly enhance perception systems in intelligent transportation, promising substantial improvements in reliability and safety for autonomous vehicles operating in varied weather conditions.
more »
« less
- Award ID(s):
- 2152258
- PAR ID:
- 10584682
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3315-0592-9
- Page Range / eLocation ID:
- 1418 to 1425
- Format(s):
- Medium: X
- Location:
- Edmonton, AB, Canada
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Various techniques in computer vision have been proposed for water level detection. However, existing methods face challenges during adverse conditions including snow, fog, rain, and nighttime. In this paper, we introduce a novel approach that analyzes images for water level detection by incorporating a deblurring process to increase image clarity. By employing real-time object detection technique YOLOv5, we show that the proposed approach can achieve significantly improved precision, during both daytime and nighttime under under challenging weather circumstances.more » « less
-
The rapid progress in intelligent vehicle technology has led to a significant reliance on computer vision and deep neural networks (DNNs) to improve road safety and driving experience. However, the image signal processing (ISP) steps required for these networks, including demosaicing, color correction, and noise reduction, increase the overall processing time and computational resources. To address this, our paper proposes an improved version of the Faster R-CNN algorithm that integrates camera parameters into raw image input, reducing dependence on complex ISP steps while enhancing object detection accuracy. Specifically, we introduce additional camera parameters, such as ISO speed rating, exposure time, focal length, and F-number, through a custom layer into the neural network. Further, we modify the traditional Faster R-CNN model by adding a new fully connected layer, combining these parameters with the original feature maps from the backbone network. Our proposed new model, which incorporates camera parameters, has a 4.2% improvement in mAP@[0.5,0.95] compared to the traditional Faster RCNN model for object detection tasks on raw image data.more » « less
-
In recent years, Convolutional Neural Networks (CNNs) have shown superior capability in visual learning tasks. While accuracy-wise CNNs provide unprecedented performance, they are also known to be computationally intensive and energy demanding for modern computer systems. In this paper, we propose Virtual Pooling (ViP), a model-level approach to improve speed and energy consumption of CNN-based image classification and object detection tasks, with a provable error bound. We show the efficacy of ViP through experiments on four CNN models, three representative datasets, both desktop and mobile platforms, and two visual learning tasks, i.e., image classification and object detection. For example, ViP delivers 2.1x speedup with less than 1.5% accuracy degradation in ImageNet classification on VGG16, and 1.8x speedup with 0.025 mAP degradation in PASCAL VOC object detection with Faster-RCNN. ViP also reduces mobile GPU and CPU energy consumption by up to 55% and 70%, respectively. As a complementary method to existing acceleration approaches, ViP achieves 1.9x speedup on ThiNet leading to a combined speedup of 5.23x on VGG16. Furthermore, ViP provides a knob for machine learning practitioners to generate a set of CNN models with varying trade-offs between system speed/energy consumption and accuracy to better accommodate the requirements of their tasks. Code is available at https://github.com/cmu-enyac/VirtualPooling.more » « less
-
null (Ed.)This paper presents a fabric defect detection network (FabricNet) for automatic fabric defect detection. Our proposed FabricNet incorporates several effective techniques, such as Feature Pyramid Network (FPN), Deformable Convolution (DC) network, and Distance IoU Loss function, into vanilla Faster RCNN to improve the accuracy and speed of fabric defect detection. Our experiment shows that, when optimizations are combined, the FabricNet achieves 62.07% mAP and 97.37% AP50 on DAGM 2007 dataset, and an average prediction speed of 17 frames per second.more » « less
An official website of the United States government

