Vehicle flow estimation has many potential smart cities and transportation applications. Many cities have existing camera networks which broadcast image feeds; however, the resolution and frame-rate are too low for existing computer vision algorithms to accurately estimate flow. In this work, we present a computer vision and deep learning framework for vehicle tracking. We demonstrate a novel tracking pipeline which enables accurate flow estimates in a range of environments under low resolution and frame-rate constraints. We demonstrate that our system is able to track vehicles in New York City's traffic camera video feeds at 1 Hz or lower frame-rate, and produces higher traffic flow accuracy than popular open source tracking frameworks.
more »
« less
This content will become publicly available on March 13, 2025
A Comprehensive Analysis of Object Detectors in Adverse Weather Conditions
In this paper, we meticulously examine the robustness of computer vision object detection frameworks within the intricate realm of real-world traffic scenarios, with a particular emphasis on challenging adverse weather conditions. Conventional evaluation methods often prove inadequate in addressing the complexities inherent in dynamic traffic environments—an increasingly vital consideration as global advancements in autonomous vehicle technologies persist. Our investigation delves specifically into the nuanced performance of these algorithms amidst adverse weather conditions like fog, rain, snow, sun flare, and more, acknowledging the substantial impact of weather dynamics on their precision. Significantly, we seek to underscore that an object detection framework excelling in clear weather may encounter significant challenges in adverse conditions. Our study incorporates in-depth ablation studies on dual modality architectures, exploring a range of applications including traffic monitoring, vehicle tracking, and object tracking. The ultimate goal is to elevate the safety and efficiency of transportation systems, recognizing the pivotal role of robust computer vision systems in shaping the trajectory of future autonomous and intelligent transportation technologies.
more »
« less
- Award ID(s):
- 2025234
- NSF-PAR ID:
- 10521809
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3503-6929-8
- Page Range / eLocation ID:
- 1 to 6
- Format(s):
- Medium: X
- Location:
- Princeton, NJ, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract—Object perception plays a fundamental role in Cooperative Driving Automation (CDA) which is regarded as a revolutionary promoter for next-generation transportation systems. However, the vehicle-based perception may suffer from the limited sensing range and occlusion as well as low penetration rates in connectivity. In this paper, we propose Cyber Mobility Mirror (CMM), a next-generation real-world object perception system for 3D object detection, tracking, localization, and reconstruction, to explore the potential of roadside sensors for enabling CDA in the real world. The CMM system consists of six main components: i) the data pre-processor to retrieve and preprocess the raw data; ii) the roadside 3D object detector to generate 3D detection results; iii) the multi-object tracker to identify detected objects; iv) the global locator to generate geo-localization information; v) the mobile-edge-cloud-based communicator to transmit perception information to equipped vehicles, and vi) the onboard advisor to reconstruct and display the real-time traffic conditions. An automatic perception evaluation approach is proposed to support the assessment of data-driven models without human-labeling requirements and a CMM field-operational system is deployed at a real-world intersection to assess the performance of the CMM. Results from field tests demonstrate that our CMM prototype system can achieve 96.99% precision and 83.62% recall for detection and 73.55% ID-recall for tracking. High-fidelity real-time traffic conditions (at the object level) can be geo-localized with a root-mean-square error (RMSE) of 0.69m and 0.33m for lateral and longitudinal direction, respectively, and displayed on the GUI of the equipped vehicle with a frequency of 3 − 4Hz.more » « less
-
The paper discusses a machine learning vision and nonlinear control approach for autonomous ship landing of vertical flight aircraft without utilizing GPS signal. The central idea involves automating the Navy helicopter ship landing procedure where the pilot utilizes the ship as the visual reference for long-range tracking, but refers to a standardized visual cue installed on most Navy ships called the ”horizon bar” for the final approach and landing phases. This idea is implemented using a uniquely designed nonlinear controller integrated with machine vision. The vision system utilizes machine learning based object detection for long-range ship tracking, and classical computer vision for object detection and the estimation of aircraft relative position and orientation during the final approach and landing phases. The nonlinear controller operates based on the information estimated by the vision system and has demonstrated robust tracking performance even in the presence of uncertainties. The developed autonomous ship landing system is implemented on a quad-rotor vertical take-off and landing (VTOL) capable unmanned aerial vehicle (UAV) equipped with an onboard camera and was demonstrated on a moving deck, which imitates realistic ship deck motions using a Stewart platform and a visual cue equivalent to the horizon bar. Extensive simulations and flight tests are conducted to demonstrate vertical landing safety, tracking capability, and landing accuracy while the deck is in motion.more » « less
-
null (Ed.)The Go-CHART is a four-wheel, skid-steer robot that resembles a 1:28 scale standard commercial sedan. It is equipped with an onboard sensor suite and both onboard and external computers that replicate many of the sensing and computation capabilities of a full-size autonomous vehicle. The Go-CHART can autonomously navigate a small-scale traffic testbed, responding to its sensor input wiwithth programmed controllers. Alternatively, it can be remotely driven by a user who views the testbed through the robot's four camera feeds, which facilitates safe, controlled experiments on driver interactions with driverless vehicles. We demonstrate the Go-CHART's ability to perform lane tracking and detection of traffic signs, traffic signals, and other Go-CHARTs in real-time, utilizing an external GPU that runs computationally intensive computer vision and deep learning algorithms.more » « less
-
null (Ed.)Vehicle detection with visual sensors like lidar and camera is one of the critical functions enabling autonomous driving. While they generate fine-grained point clouds or high-resolution images with rich information in good weather conditions, they fail in adverse weather (e.g., fog) where opaque particles distort lights and significantly reduce visibility. Thus, existing methods relying on lidar or camera experience significant performance degradation in rare but critical adverse weather conditions. To remedy this, we resort to exploiting complementary radar, which is less impacted by adverse weather and becomes prevalent on vehicles. In this paper, we present Multimodal Vehicle Detection Network (MVDNet), a two-stage deep fusion detector, which first generates proposals from two sensors and then fuses region-wise features between multimodal sensor streams to improve final detection results. To evaluate MVDNet, we create a procedurally generated training dataset based on the collected raw lidar and radar signals from the open-source Oxford Radar Robotcar. We show that the proposed MVDNet surpasses other state-of-the-art methods, notably in terms of Average Precision (AP), especially in adverse weather conditions. The code and data are available at https://github.com/qiank10/MVDNet.more » « less