skip to main content

Title: Modeling Electron Acceleration and Transport in the Early Impulsive Phase of the 2017 September 10th Solar Flare
Abstract The X8.2-class limb flare on 2017 September 10 is among the best studied solar flare events owing to its great similarity to the standard flare model and the broad coverage by multiple spacecraft and ground-based observations. These multiwavelength observations indicate that electron acceleration and transport are efficient in the reconnection and flare looptop regions. However, there lacks a comprehensive model for explaining and interpreting the multi-faceted observations. In this work, we model the electron acceleration and transport in the early impulsive phase of this flare. We solve the Parker transport equation that includes the primary acceleration mechanism during magnetic reconnection in the large-scale flare region modeled by MHD simulations. We find that electrons are accelerated up to several MeV and fill a large volume of the reconnection region, similar to the observations shown in microwaves. The electron spatial distribution and spectral shape in the looptop region agree well with those derived from the microwave and hard X-ray emissions before magnetic islands grow large and dominate the acceleration. Future emission modelings using the electron maps will enable direct comparison with microwave and hard X-ray observations. These results shed new light on the electron acceleration and transport in a broad region more » of solar flares within a data-constrained realistic flare geometry. « less
; ; ; ;
Award ID(s):
2109154 2108853 1654382
Publication Date:
Journal Name:
The Astrophysical Journal
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A number of double coronal X-ray sources have been observed during solar flares by RHESSI, where the two sources reside at different sides of the inferred reconnection site. However, where and how these X-ray-emitting electrons are accelerated remains unclear. Here we present the first model of the double coronal hard X-ray (HXR) sources, where electrons are accelerated by a pair of termination shocks driven by bidirectional fast reconnection outflows. We model the acceleration and transport of electrons in the flare region by numerically solving the Parker transport equation using velocity and magnetic fields from the macroscopic magnetohydrodynamic simulation of a flux rope eruption. We show that electrons can be efficiently accelerated by the termination shocks and high-energy electrons mainly concentrate around the two shocks. The synthetic HXR emission images display two distinct sources extending to >100 keV below and above the reconnection region, with the upper source much fainter than the lower one. The HXR energy spectra of the two coronal sources show similar spectral slopes, consistent with the observations. Our simulation results suggest that the flare termination shock can be a promising particle acceleration mechanism in explaining the double-source nonthermal emissions in solar flares.
  2. Abstract Even small solar flares can display a surprising level of complexity regarding their morphology and temporal evolution. Many of their properties, such as energy release and electron acceleration can be studied using highly complementary observations at X-ray and radio wavelengths. We present X-ray observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager and radio observations from the Karl G. Jansky Very Large Array (VLA) of a series of GOES A3.4–B1.6 class flares observed on 2013 April 23. The flares, as seen in X-ray and extreme ultraviolet, originated from multiple locations within active region NOAA 11726. A veritable zoo of different radio emissions between 1 GHz and 2 GHz was observed cotemporally with the X-ray flares. In addition to broadband continuum emission, broadband short-lived bursts and narrowband spikes, indicative of accelerated electrons, were observed. However, these sources were located up to 150″ away from the flaring X-ray sources but only some of these emissions could be explained as signatures of electrons that were accelerated near the main flare site. For other sources, no obvious magnetic connection to the main flare site could be found. These emissions likely originate from secondary acceleration sites triggered by the flare, but may bemore »due to reconnection and acceleration completely unrelated to the cotemporally observed flare. Thanks to the extremely high sensitivity of the VLA, not achieved with current X-ray instrumentation, it is shown that particle acceleration happens frequently and at multiple locations within a flaring active region.« less
  3. Electrons in earth's magnetotail are energized significantly both in the form of heating and in the form of acceleration to non-thermal energies. While magnetic reconnection is considered to play an important role in this energization, it still remains unclear how electrons are energized and how energy is partitioned between thermal and non-thermal components. Here, we show, based on in situ observations by NASA's magnetospheric multiscale mission combined with multi-component spectral fitting methods, that the average electron energy [Formula: see text] (or equivalently temperature) is substantially higher when the locally averaged electric field magnitude [Formula: see text] is also higher. While this result is consistent with the classification of “plasma-sheet” and “tail-lobe” reconnection during which reconnection is considered to occur on closed and open magnetic field lines, respectively, it further suggests that a stochastic Fermi acceleration in 3D, reconnection-driven turbulence is essential for the production and confinement of energetic electrons in the reconnection region. The puzzle is that the non-thermal power-law component can be quite small even when the electric field is large and the bulk population is significantly heated. The fraction of non-thermal electron energies varies from sample to sample between ∼20% and ∼60%, regardless of the electric field magnitude.more »Interestingly, these values of non-thermal fractions are similar to those obtained for the above-the-looptop hard x-ray coronal sources for solar flares.« less
  4. Abstract The acceleration and transport of energetic electrons during solar flares is one of the outstanding topics in solar physics. Recent X-ray and radio imaging and spectroscopy observations have provided diagnostics of the distribution of nonthermal electrons and suggested that, in certain flare events, electrons are primarily accelerated in the loop top and likely experience trapping and/or scattering effects. By combining the focused particle transport equation with magnetohydrodynamic (MHD) simulations of solar flares, we present a macroscopic particle model that naturally incorporates electron acceleration and transport. Our simulation results indicate that physical processes such as turbulent pitch-angle scattering can have important impacts on both electron acceleration in the loop top and transport in the flare loop, and their influences are highly energy-dependent. A spatial-dependent turbulent scattering with enhancement in the loop top can enable both efficient electron acceleration to high energies and transport of abundant electrons to the footpoints. We further generate spatially resolved synthetic hard X-ray (HXR) emission images and spectra, revealing both the loop-top and footpoint HXR sources. Similar to the observations, we show that the footpoint HXR sources are brighter and harder than the loop-top HXR source. We suggest that the macroscopic particle model provides new insightsmore »into understanding the connection between the observed loop-top and footpoint nonthermal emission sources by combining the particle model with dynamically evolving MHD simulations of solar flares.« less
  5. Aims. We aim to constrain the acceleration, injection, and transport processes of flare-accelerated energetic electrons by comparing their characteristics at the Sun with those injected into interplanetary space. Methods. We have identified 17 energetic electron events well-observed with the SEPT instrument aboard STEREO which show a clear association with a hard X-ray (HXR) flare observed with the RHESSI spacecraft. We compare the spectral indices of the RHESSI HXR spectra with those of the interplanetary electrons. Because of the frequent double-power-law shape of the in situ electron spectra, we paid special attention to the choice of the spectral index used for comparison. Results. The time difference between the electron onsets and the associated type III and microwave bursts suggests that the electron events are detected at 1 AU with apparent delays ranging from 9 to 41 min. While the parent solar activity is clearly impulsive, also showing a high correlation with extreme ultraviolet jets, most of the studied events occur in temporal coincidence with coronal mass ejections (CMEs). In spite of the observed onset delays and presence of CMEs in the low corona, we find a significant correlation of about 0.8 between the spectral indices of the HXR flare and themore »in situ electrons. The correlations increase if only events with significant anisotropy are considered. This suggests that transport effects can alter the injected spectra leading to a strongly reduced imprint of the flare acceleration. Conclusions. We conclude that interplanetary transport effects must be taken into account when inferring the initial acceleration of solar energetic electron events. Although our results suggest a clear imprint of flare acceleration for the analyzed event sample, a secondary acceleration might be present which could account for the observed delays. However, the limited and variable pitch-angle coverage of SEPT could also be the reason for the observed delays.« less