skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Variability in antimicrobial chemical defenses in the Caribbean sponge Agelas tubulata: implications for disease resistance and resilience
Sponges in the genus Agelas produce a diversity of bromopyrrole alkaloid secondary metabolites, some of which are known to inhibit predators and pathogens. Selective pressures on sponges to produce chemical defenses vary in time and space, often resulting in differences in the production of secondary metabolites. To characterize intraspecific variation in these compounds, we generated metabolomic profiles of the Caribbean sponge A. tubulata across spatial gradients, including multiple sites in Belize and Grand Cayman, and depths ranging from 15 to 61 m in Grand Cayman. Samples were also analyzed from a reciprocal transplant experiment across shallow (22 m) to mesophotic (61 m) reefs. We found quantitative, but not qualitative, differences in metabolite profiles across sites and depths, with 9 metabolites contributing to that variation. In addition, transplanting sponges across depths resulted in significant changes in concentrations of the metabolite sceptrin. Sponge extracts exhibited antibacterial activity against a panel of marine and human pathogens. Multiple regression analyses showed that different metabolites were associated with antibacterial activity against different pathogens. The strongest compound-specific relationship was a negative effect of oroidin on the growth of Serratia marcescens, and purified oroidin was found to inhibit S. marcescens growth in a dose-dependent manner. Overall, A. tubulata exhibits intraspecific variability in the production of antibacterial secondary metabolites across sites and depths that signals selective responses to its environment. Given the current increase in sponge densities, and incidence of disease on coral reefs, these data have implications for disease resistance and resilience of sponges in the Anthropocene.  more » « less
Award ID(s):
1638296
PAR ID:
10351225
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Marine Ecology Progress Series
Volume:
690
ISSN:
0171-8630
Page Range / eLocation ID:
51 to 64
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mesophotic coral reef ecosystems (MCEs) are characterized by gradients in irradiance, temperature and trophic resources. As depth increases on Caribbean mesophotic reefs, particulate organic matter increases while dissolved organic matter decreases, and the increase in particulate organic matter is directly related to the increase in sponge abundances and growth rates on MCEs. To further understand the trophic ecology of sponges, changes in microbiome composition and function, stable isotopic composition and proximate biochemical composition of 4 Caribbean reef sponges ( Amphimedon compressa , Agelas tubulata , Plakortis angulospiculatus and Xestospongia muta) were quantified along a shallow to mesophotic depth gradient on Grand Cayman Island. Increases in δ 15 N for all sponges were observed as depth increased, indicating an increasing reliance on heterotrophic food resources. Species-specific changes in symbiotic microbial community composition were also observed as depth increased, and the predicted functional genes associated with nitrogen and carbon cycling showed species-specific changes between depths. Regardless of species-specific changes in microbiome community structure or function, or whether sponges were classified as high microbial or low microbial abundance, sponges increased their consumption of particulate organic matter with increasing depth into the lower mesophotic zone. 
    more » « less
  2. Abstract Sponges are a diverse phylum of sessile filter‐feeding invertebrates that are abundant on Caribbean reefs and provide essential ecological services, including nutrient cycling, reef stabilization, habitat, and food for a variety of fishes and invertebrates. As prominent members of the benthic community, and thus potential food resources, factors determining the biochemical and energetic content of sponges will affect their trophic contributions to coral reef ecosystems. In order to evaluate the influence of geographic variation on biochemical composition and energetic content in the tissue of sponges, we collected several common and widespread species (Agelas conifera,Agelas tubulata,Amphimedon compressa,Aplysina cauliformis,Niphates amorpha,Niphates erecta, andXestospongia muta) from multiple shallow reefs in four countries across the Caribbean Basin, including Belize, Curaçao, Grand Cayman, and St. Croix, U.S. Virgin Islands. In addition, we correlated inherent species‐level traits, including the production of antipredator chemical defenses and the relative abundance of microbial symbionts, with biochemical and energetic content. We found that energetic content was higher in sponges with antipredator chemical defenses, and was significantly correlated with the concentration of chemical extracts from these sponges. We also noted that sponges with high microbial abundance contained significantly more soluble protein than sponges with low microbial abundance. Finally, both biochemical and energetic content varied significantly among sponges from different locations; sponges from Grand Cayman had the highest lipid and energetic content, whereas sponges from Belize had the highest carbohydrate content but lowest energetic content. Despite similar environmental conditions at these sites, our results demonstrate that biochemical and energetic content of sponges exhibits geographic variability, with potential implications for the trophic ecology of sponges throughout the Caribbean Basin. 
    more » « less
  3. Abstract Sponges are important ecological and functional components of coral reefs. Recently, a new hypothesis about the functional ecology of sponges in organic matter recycling pathways, the sponge‐loop hypothesis, in which dissolved and particulate organic matter is taken up by sponges and shunted to higher trophic levels as detritus, has been proposed and demonstrated for shallow (< 30 m) cryptic species. However, support for this hypothesis at mesophotic depths (∼ 30–150 m) is lacking. Here, we examined detritus production, a prerequisite of the sponge loop pathway, in a reciprocal transplant experiment, usingHalisarca caeruleafrom water depths of 10 and 50 m. Detritus production was significantly lower in mesophotic sponges compared to shallow samples ofH. caerulea. Additionally, detritus production rates in transplanted sponges moved in the direction of rates observed for resident conspecifics. The microbiome of these sponge populations was also significantly different between shallow and mesophotic depths, and the microbial communities of the transplanted sponges also shifted in the direction of their new depth in 10 d largely driven by changes inOxyphotobacteria,Acidimicrobiia,Nitrososphaeria,Nitrospira,Deltaproteobacteria, andDadabacteriia. This occurred in an environment where the availability of both dissolved and particulate trophic resources changed significantly across the shallow to mesophotic depth gradient where these sponge populations were found. These results suggest that changes in sponge detritus production are primarily driven by differential quality and quantity of trophic resources, as well as their utilization by the sponge host, and its microbiome, along the shallow to mesophotic depth gradient. 
    more » « less
  4. With the decline of reef-building corals, other organisms are taking over Caribbean reefs, including sponges and benthic cyanobacterial mats (BCM). Sponges take up dissolved organic matter (DOM), but the sources and chemical characteristics of DOM taken up by sponges are unknown. One likely DOM source is benthic autotrophs, including BCM, which are prolific producers of DOM. We tested the hypothesis that sponges take up BCM-derived DOM using laboratory experiments in which seawater samples were collected before and after sequential incubations of BCM and small individuals of the giant barrel sponge Xestospongia muta. The concentration of DOC and relative abundance of individual features in the high resolution mass spectra using untargeted metabolomics were determined for each sample. There was a significant increase in DOC after BCM incubations, followed by a significant decrease after sponge incubations. These changes were mirrored in single feature relative abundances, with 2101 out of 3667 features significantly enriched during BCM incubations, and 54% of these (1142) depleted during sponge incubations. Among BCM-enriched and sponge-depleted features, many were halogenated, some were known BCM-derived secondary metabolites (e.g., carriebowmide, barbamide), and others matched unidentified sponge-depleted features from seawater samples collected on the reef. To our knowledge, this is the first report that sponges take up BCM exudates, including some that were detectable in reef DOM, revealing a path of molecules from source to sink through their environment. The BCM exudates taken up by sponges may be used as a food source or incorporated into sponge secondary metabolites for holobiont maintenance or chemical defenses. 
    more » « less
  5. null (Ed.)
    Competition for limited space is an important driver of benthic community structure on coral reefs. Studies of coral-algae and coral-sponge interactions often show competitive dominance of algae and sponges over corals, but little is known about the outcomes when these groups compete in a multispecies context. Multispecies competition is increasingly common on Caribbean coral reefs as environmental degradation drives loss of reef-building corals and proliferation of alternative organisms such as algae and sponges. New methods are needed to understand multispecies competition, whose outcomes can differ widely from pairwise competition and range from coexistence to exclusion. In this study, we used 3D photogrammetry and image analyses to compare pairwise and multispecies competition on reefs in the US Virgin Islands. Sponges ( Desmapsamma anchorata, Aplysina cauliformis ) and macroalgae ( Lobophora variegata ) were attached to coral ( Porites astreoides ) and arranged to simulate multispecies (coral-sponge-algae) and pairwise (coral-sponge, coral-algae) competition. Photogrammetric 3D models were produced to measure surface area change of coral and sponges, and photographs were analyzed to measure sponge-coral, algae-coral, and algae-sponge overgrowth. Coral lost more surface area and was overgrown more rapidly by the sponge D. anchorata in multispecies treatments, when the sponge was also in contact with algae. Algae contact may confer a competitive advantage to the sponge D. anchorata, but not to A. cauliformis , underscoring the species-specificity of these interactions. This first application of photogrammetry to study competition showed meaningful losses of living coral that, combined with significant overgrowths by competitors detected from image analyses, exposed a novel outcome of multispecies competition. 
    more » « less