skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: Moby: A Blackout-Resistant Anonymity Network for Mobile Devices
Internet blackouts are challenging environments for anonymity and censorship resistance. Existing popular anonymity networks (e.g., Freenet, I2P, Tor) rely on Internet connectivity to function, making them impracticable during such blackouts. In such a setting, mobile ad-hoc networks can provide connectivity, but prior communication protocols for ad-hoc networks are not designed for anonymity and attack resilience. We address this need by designing, implementing, and evaluating Moby, a blackout-resistant anonymity network for mobile devices. Moby provides end-to-end encryption, forward secrecy and sender-receiver anonymity. It features a bi-modal design of operation, using Internet connectivity when available and ad-hoc networks during blackouts. During periods of Internet connectivity, Moby functions as a regular messaging application and bootstraps information that is later used in the absence of Internet connectivity to achieve secure anonymous communications. Moby incorporates a model of trust based on users’ contact lists, and a trust establishment protocol that mitigates flooding attacks. We perform an empirically informed simulation-based study based on cellphone traces of 268,596 users over the span of a week for a large cellular provider to determine Moby’s feasibility and present our findings. Last, we implement and evaluate the Moby client as an Android app.  more » « less
Award ID(s):
1955227
PAR ID:
10351285
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings on Privacy Enhancing Technologies
Volume:
2022
Issue:
3
ISSN:
2299-0984
Page Range / eLocation ID:
247 to 267
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Information-centric networking (ICN) replaces the widely used host-centric networking paradigm in communication networks (e.g., Internet and mobile ad hoc networks) with an information-centric paradigm, which prioritizes the delivery of named content, oblivious of the contents' origin. Content and client security, provenance, and identity privacy are intrinsic by design in the ICN paradigm as opposed to the current host centric paradigm where they have been instrumented as an afterthought. However, given its nascency, the ICN paradigm has several open security and privacy concerns. In this paper, we survey the existing literature in security and privacy in ICN and present open questions. More specifically, we explore three broad areas: 1) security threats; 2) privacy risks; and 3) access control enforcement mechanisms. We present the underlying principle of the existing works, discuss the drawbacks of the proposed approaches, and explore potential future research directions. In security, we review attack scenarios, such as denial of service, cache pollution, and content poisoning. In privacy, we discuss user privacy and anonymity, name and signature privacy, and content privacy. ICN's feature of ubiquitous caching introduces a major challenge for access control enforcement that requires special attention. We review existing access control mechanisms including encryption-based, attribute-based, session-based, and proxy re-encryption-based access control schemes. We conclude the survey with lessons learned and scope for future work. 
    more » « less
  2. First responders and other tactical teams rely on mo- bile tactical networks to coordinate and accomplish emergent time- critical tasks. The information exchanged through these networks is vulnerable to various strategic cyber network attacks. Detecting and mitigating them is a challenging problem due to the volatile and mobile nature of an ad hoc environment. This paper proposes MalCAD, a graph machine learning-based framework for detecting cyber attacks in mobile tactical software-defined networks. Mal- CAD operates based on observing connectivity features among various nodes obtained using graph theory, instead of collecting information at each node. The MalCAD framework is based on the XGBOOST classification algorithm and is evaluated for lost versus wasted connectivity and random versus targeted cyber attacks. Results show that, while the initial cyber attacks create a loss of 30%–60% throughput, MalCAD results in a gain of average throughput by 25%–50%, demonstrating successful attack mitigation. 
    more » « less
  3. The Named Data Networking architecture mandates cryptographic signatures of packets at the network layer. Traditional RSA and ECDSA public key signatures require obtaining signer's NDN certificate (and, if needed, the next-level certificates of the trust chain) to validate the signatures. This potentially creates two problems. First, the communication channels must be active in order to retrieve the certificates, which is not always the case in disruptive and ad hoc environments. Second, the certificate identifies the individual producer and thus producer anonymity cannot be guaranteed if necessary. In this paper, we present NDN-ABS, an alternative NDN signatures design based on the attribute-based signatures, to addresses both these problems. With NDN-ABS, data packets can be verified without the need for any network retrieval (provided the trust anchor is pre-configured) and attributes can be designed to only identify application-defined high-level producer anonymity sets, thus ensuring individual producer's anonymity. The paper uses an illustrative smart-campus environment to define and evaluate the design and highlight how the NDN trust schema can manage the validity of NDN-ABS signatures. The paper also discusses performance limitations of ABS and potential ways they can be overcome in a production environment. 
    more » « less
  4. Mobile apps nowadays are often packaged with third-party ad libraries to monetize user data. Many mobile ad networks exploit these mobile apps to extract sensitive real-time geographical data about the users for location-based targeted advertising. However, the massive collection of sensitive information by the ad networks has raised serious privacy concerns. Unfortunately, the extent and granularity of private data collection of the location-based ad networks remain obscure. In this work, we present a mobile tracking measurement study to characterize the severity and significance of location-based private data collection in mobile ad networks, by using an automated fine-grained data collection instrument running across different geographical areas. We perform extensive threat assessments for different ad networks using 1,100 popular apps running across 10 different cities. This study discovers that the number of location-based ads tend to be positively correlated with the population density of locations, ad networks' data collection behaviors differ across different locations, and most ad networks are capable of collecting precise location data. Detailed analysis further reveals the significant impact of geolocation on the tracking behavior of targeted ads, and a noteworthy security concern for advertising organizations to aggregate different types of private user data across multiple apps for a better targeted ad experience. 
    more » « less
  5. null (Ed.)
    Edge and fog computing encompass a variety of technologies that are poised to enable new applications across the Internet that support data capture, storage, processing, and communication across the networking continuum. These environments pose new challenges to the design and implementation of networks-as membership can be dynamic and devices are heterogeneous, widely distributed geographically, and in proximity to end-users, as is the case with mobile and Internet-of-Things (IoT) devices. We present a demonstration of EdgeVPN.io (Evio for short), an open-source programmable, software-defined network that addresses challenges in the deployment of virtual networks spanning distributed edge and cloud resources, in particular highlighting its use in support of the Kubernetes container orchestration middleware. The demo highlights a deployment of unmodified Kubernetes middleware across a virtual cluster comprising virtual machines deployed both in cloud providers, and in distinct networks at the edge-where all nodes are assigned private IP addresses and subject to different NAT (Network Address Translation) middleboxes, connected through an Evio virtual network. The demo includes an overview of the configuration of Kubernetes and Evio nodes and the deployment of Docker-based container pods, highlighting the seamless connectivity for TCP/IP applications deployed on the pods. 
    more » « less