Abstract We present high-cadence ultraviolet through near-infrared observations of the Type Ia supernova (SN Ia) 2023bee atD= 32 ± 3 Mpc, finding excess flux in the first days after explosion, particularly in our 10 minutes cadence TESS light curve and Swift UV data. Compared to a few other normal SNe Ia with early excess flux, the excess flux in SN 2023bee is redder in the UV and less luminous. We present optical spectra of SN 2023bee, including two spectra during the period where the flux excess is dominant. At this time, the spectra are similar to those of other SNe Ia but with weaker Siii, Cii,and Caiiabsorption lines, perhaps because the excess flux creates a stronger continuum. We compare the data to several theoretical models on the origin of early excess flux in SNe Ia. Interaction with either the companion star or close-in circumstellar material is expected to produce a faster evolution than observed. Radioactive material in the outer layers of the ejecta, either from double detonation explosion or from a56Ni clump near the surface, cannot fully reproduce the evolution either, likely due to the sensitivity of early UV observable to the treatment of the outer part of ejecta in simulation. We conclude that no current model can adequately explain the full set of observations. We find that a relatively large fraction of nearby, bright SNe Ia with high-cadence observations have some amount of excess flux within a few days of explosion. Considering potential asymmetric emission, the physical cause of this excess flux may be ubiquitous in normal SNe Ia.
more »
« less
A Speed Bump: SN 2021aefx Shows that Doppler Shift Alone Can Explain Early Excess Blue Flux in Some Type Ia Supernovae
Abstract We present early-time photometric and spectroscopic observations of the Type Ia supernova (SN Ia) 2021aefx. The early-time u -band light curve shows an excess flux when compared to normal SNe Ia. We suggest that the early excess blue flux may be due to a rapid change in spectral velocity in the first few days post explosion, produced by the emission of the Ca ii H&K feature passing from the u to the B bands on the timescale of a few days. This effect could be dominant for all SNe Ia that have broad absorption features and early-time velocities over 25,000 km s −1 . It is likely to be one of the main causes of early excess u -band flux in SNe Ia that have early-time high velocities. This effect may also be dominant in the UV filters, as well as in places where the SN spectral energy distribution is quickly rising to longer wavelengths. The rapid change in velocity can only produce a monotonic change (in flux-space) in the u band. For objects that explode at lower velocities, and have a more structured shape in the early excess emission, there must also be an additional parameter producing the early-time diversity. More early-time observations, in particular early spectra, are required to determine how prominent this effect is within SNe Ia.
more »
« less
- PAR ID:
- 10351306
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 932
- Issue:
- 1
- ISSN:
- 2041-8205
- Page Range / eLocation ID:
- L2
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present the 30 minutes cadence Kepler/K2 light curve of the Type Ia supernova (SN Ia) SN 2018agk, covering approximately one week before explosion, the full rise phase, and the decline until 40 days after peak. We additionally present ground-based observations in multiple bands within the same time range, including the 1 day cadence DECam observations within the first ∼5 days after the first light. The Kepler early light curve is fully consistent with a single power-law rise, without evidence of any bump feature. We compare SN 2018agk with a sample of other SNe Ia without early excess flux from the literature. We find that SNe Ia without excess flux have slowly evolving early colors in a narrow range ( g − i ≈ −0.20 ± 0.20 mag) within the first ∼10 days. On the other hand, among SNe Ia detected with excess, SN 2017cbv and SN 2018oh tend to be bluer, while iPTF16abc’s evolution is similar to normal SNe Ia without excess in g − i . We further compare the Kepler light curve of SN 2018agk with companion-interaction models, and rule out the existence of a typical nondegenerate companion undergoing Roche lobe overflow at viewing angles smaller than 45°.more » « less
-
Abstract We present extensive optical observations of a nearby Type Ia supernova (SN Ia), SN 2021hpr, located in the spiral galaxy NGC 3147 at a distance of ∼45 Mpc. Our observations cover a phase within ∼1–2 days to ∼290 days after the explosion. SN 2021hpr is found to be a spectroscopically normal SN Ia, with an absoluteB-band peak magnitude of mag and a postpeak decline rate of Δm15(B) = 1.0 ± 0.01 mag. Early time light curves showed a ∼7.0% excess emission compared to a homogeneously expanding fireball model, likely due to SN ejecta interacting with a companion or immediate circumstellar matter (CSM). The optical spectra of SN 2021hpr are overall similar to those of normal SNe Ia, but characterized by prominent detached high-velocity features (HVFs) of Siiiand Caiiin the early phase. After examining a small sample of well-observed normal SNe Ia, we find that the HVFs are likely common for the subgroup with early excess emission. The association of an early bump feature with the HVFs could be attributed to density or abundance enhancement at the outer layer of the exploding star, likely as a result of interactions with companion/CSM or experiencing more complete burning. Nevertheless, the redshifted Feiiand Niiilines in the nebular-phase spectra of SN 2021hpr, contrary to the blueshift trend seen in other SNe Ia showing early bump features, indicate its peculiarity in the explosion that remains to be understood.more » « less
-
Abstract Nebular-phase observations of peculiar Type Ia supernovae (SNe Ia) provide important constraints on progenitor scenarios and explosion dynamics for both these rare SNe and the more common, cosmologically useful SNe Ia. We present observations from an extensive ground- and space-based follow-up campaign to characterize SN 2022pul, a super-Chandrasekhar mass SN Ia (alternatively “03fg-like” SN), from before peak brightness to well into the nebular phase across optical to mid-infrared (MIR) wavelengths. The early rise of the light curve is atypical, exhibiting two distinct components, consistent with SN Ia ejecta interacting with dense carbon–oxygen (C/O)-rich circumstellar material (CSM). In the optical, SN 2022pul is most similar to SN 2012dn, having a low estimated peak luminosity (MB= −18.9 mag) and high photospheric velocity relative to other 03fg-like SNe. In the nebular phase, SN 2022pul adds to the increasing diversity of the 03fg-like subclass. From 168 to 336 days after peakB-band brightness, SN 2022pul exhibits asymmetric and narrow emission from [Oi]λλ6300, 6364 (FWHM ≈ 2000 km s−1), strong, broad emission from [Caii]λλ7291, 7323 (FWHM ≈ 7300 km s−1), and a rapid Feiiito Feiiionization change. Finally, we present the first ever optical-to-MIR nebular spectrum of an 03fg-like SN Ia using data from JWST. In the MIR, strong lines of neon and argon, weak emission from stable nickel, and strong thermal dust emission (withT≈ 500 K), combined with prominent [Oi] in the optical, suggest that SN 2022pul was produced by a white dwarf merger within C/O-rich CSM.more » « less
-
ABSTRACT Type Ia supernovae (SNe Ia) arise from the thermonuclear explosion in binary systems involving carbon–oxygen white dwarfs (WDs). The pathway of WDs acquiring mass may produce circumstellar material (CSM). Observing SNe Ia within a few hours to a few days after the explosion can provide insight into the nature of CSM relating to the progenitor systems. In this paper, we propose a CSM model to investigate the effect of ejecta−CSM interaction on the early-time multiband light curves of SNe Ia. By varying the mass-loss history of the progenitor system, we apply the ejecta−CSM interaction model to fit the optical and ultraviolet (UV) photometric data of eight SNe Ia with early excess. The photometric data of SNe Ia in our sample can be well matched by our CSM model except for the UV-band light curve of iPTF14atg, indicating its early excess may not be due to the ejecta−CSM interaction. Meanwhile, the CSM interaction can generate synchrotron radiation from relativistic electrons in the shocked gas, making radio observations a distinctive probe of CSM. The radio luminosity based on our models suggests that positive detection of the radio signal is only possible within a few days after the explosion at higher radio frequencies (e.g. ∼250 GHz); at lower frequencies (e.g. ∼1.5 GHz), the detection is difficult. These models lead us to conclude that a multimessenger approach that involves UV, optical, and radio observations of SNe Ia a few days past explosion is needed to address many of the outstanding questions concerning the progenitor systems of SNe Ia.more » « less
An official website of the United States government

