skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A sensor-based calibration system for three-dimensional digital image correlation
Three-dimensional digital image correlation (3D-DIC) has become a strong alternative to traditional contact-based techniques for structural health monitoring. 3D-DIC can extract the full-field displacement of a structure from a set of synchronized stereo images. Before performing 3D-DIC, a complex calibration process must be completed to obtain the stereovision system’s extrinsic parameters (i.e., cameras’ distance and orientation). The time required for the calibration depends on the dimensions of the targeted structure. For example, for large-scale structures, the calibration may take several hours. Furthermore, every time the cameras’ position changes, a new calibration is required to recalculate the extrinsic parameters. The approach proposed in this research allows determining the 3D-DIC extrinsic parameters using the data measured with commercially available sensors. The system utilizes three Inertial Measurement Units with a laser distance meter to compute the relative orientation and distance between the cameras. In this paper, an evaluation of the sensitivity of the newly developed sensor suite is provided by assessing the errors in the measurement of the extrinsic parameters. Analytical simulations performed on a 7.5 x 5.7 m field of view using the data retrieved from the sensors show that the proposed approach provides an accuracy of ~10-6 m and a promising way to reduce the complexity of 3D-DIC calibration.  more » « less
Award ID(s):
2018992
PAR ID:
10351311
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Fromme, Paul; Su, Zhongqing
Date Published:
Journal Name:
Health Monitoring of Structural and Biological Systems XVI
Page Range / eLocation ID:
54
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fromme, Paul; Su, Zhongqing (Ed.)
    Stereovision systems can extract full-field three-dimensional (3D) displacements of structures by processing the images collected with two synchronized cameras. To obtain accurate measurements, the cameras must be calibrated to account for lens distortion (i.e., intrinsic parameters) and compute the cameras’ relative position and orientation (i.e., extrinsic parameters). Traditionally, calibration is performed by taking photos of a calibration object (e.g., a checkerboard) with the two cameras. Because the calibration object must be similar in size to the targeted structure, measurements on large-scale structures are highly impractical. This research proposes a multi-sensor board with three inertial measurement units and a laser distance meter to compute the extrinsic parameters of a stereovision system and streamline the calibration procedure. In this paper, the performances of the proposed sensor-based calibration are compared with the accuracy of the traditional image-based calibration procedure. Laboratory experiments show that cameras calibrated with the multi-sensor board measure displacements with 95% accuracy compared to displacements obtained from cameras calibrated with the traditional procedure. The results of this study indicate that the sensor-based approach can increase the applicability of 3D digital image correlation measurements to large-scale structures while reducing the time and complexity of the calibration. 
    more » « less
  2. We propose a multi-stage calibration method for increasing the overall accuracy of a large-scale structured light system by leveraging the conventional stereo calibration approach using a pinhole model. We first calibrate the intrinsic parameters at a near distance and then the extrinsic parameters with a low-cost large-calibration target at the designed measurement distance. Finally, we estimate pixel-wise errors from standard stereo 3D reconstructions and determine the pixel-wise phase-to-coordinate relationships using low-order polynomials. The calibrated pixel-wise polynomial functions can be used for 3D reconstruction for a given pixel phase value. We experimentally demonstrated that our proposed method achieves high accuracy for a large volume: sub-millimeter within 1200(H) × 800 (V) × 1000(D) mm3
    more » « less
  3. We present a novel approach for the radiometric calibration of phase-measuring 3D sensors. Our approach can be applied to a broad variety of scenes and calculates the calibration parameters “on-the-fly” from the actual object measurement images, meaning that no additional calibration session is required. 
    more » « less
  4. Robust and effective fruit detection and localization is essential for robotic harvesting systems. While extensive research efforts have been devoted to improving fruit detection, less emphasis has been placed on the fruit localization aspect, which is a crucial yet challenging task due to limited depth accuracy from existing sensor measurements in the natural orchard environment with variable lighting conditions and foliage/branch occlusions. In this paper, we present the system design and calibration of an Active LAser-Camera Scanner (ALACS), a novel perception module for robust and high-precision fruit localization. The hardware of the ALACS mainly consists of a red line laser, an RGB camera, and a linear motion slide, which are seamlessly integrated into an active scanning scheme where a dynamic-targeting laser-triangulation principle is employed. A high-fidelity extrinsic model is developed to pair the laser illumination and the RGB camera, enabling precise depth computation when the target is captured by both sensors. A random sample consensus-based robust calibration scheme is then designed to calibrate the model parameters based on collected data. Comprehensive evaluations are conducted to validate the system model and calibration scheme. The results show that the proposed calibration method can detect and remove data outliers to achieve robust parameter computation, and the calibrated ALACS system is able to achieve high-precision localization with the maximum depth measurement error being less than 4 mm at distance ranging from 0.6 to 1.2 m. 
    more » « less
  5. Hydrogels are a class of soft, highly deformable materials formed by swelling a network of polymer chains in water. With mechanical properties that mimic biological materials, hydrogels are often proposed for load bearing biomedical or other applications in which their deformation and failure properties will be important. To study the failure of such materials a means for the measurement of deformation fields beyond simple uniaxial tension tests is required. As a non-contact, full-field deformation measurement method, Digital Image Correlation (DIC) is a good candidate for such studies. The application of DIC to hydrogels is studied here with the goal of establishing the accuracy of DIC when applied to hydrogels in the presence of large strains and large strain gradients. Experimental details such as how to form a durable speckle pattern on a material that is 90% water are discussed. DIC is used to measure the strain field in tension loaded samples containing a central hole, a circular edge notch and a sharp crack. Using a nonlinear, large deformation constitutive model, these experiments are modeled using the finite element method (FEM). Excellent agreement between FEM and DIC results for all three geometries shows that the DIC measurements are accurate up to strains of over 10, even in the presence of very high strain gradients near a crack tip. The method is then applied to verify a theoretical prediction that the deformation field in a cracked sample under relaxation loading, i.e. constant applied boundary displacement, is stationary in time even as the stress relaxes by a factor of three. 
    more » « less