skip to main content

This content will become publicly available on December 15, 2022

Title: An imaging polarimetry survey of Type Ia supernovae: are peculiar extinction and polarization properties produced by circumstellar or interstellar matter?
ABSTRACT Some highly reddened Type Ia supernovae (SNe Ia) display low total-to-selective extinction ratios (RV ≲ 2) in comparison to that of typical Milky Way dust (RV ≈ 3.3), and polarization curves that rise steeply to blue wavelengths, with peak polarization values at short wavelengths ($\lambda _{\rm max} \lt 0.4\, \mu$m) in comparison to the typical Galactic values ($\lambda _{\rm max} \approx 0.55\, \mu$ m). Understanding the source of these properties could provide insight into the progenitor systems of SNe Ia. We aim to determine whether they are the result of the host galaxy’s interstellar dust or circumstellar dust. This is accomplished by analysing the continuum polarization of 66 SNe Ia in dust-rich spiral galaxies and 13 SNe Ia in dust-poor elliptical galaxies as a function of normalized galactocentric distance. We find that there is a general trend of SNe Ia in spiral galaxies displaying increased polarization values when located closer to the host galaxies’ centre, while SNe Ia in elliptical host galaxies display low polarization. Furthermore, all highly polarized SNe Ia in spiral host galaxies display polarization curves rising toward blue wavelengths, while no evidence of such polarization properties is shown in elliptical host galaxies. This indicates that the source of the peculiar polarization more » curves is likely the result of interstellar material as opposed to circumstellar material. The peculiar polarization and extinction properties observed toward some SNe Ia may be explained by the radiative torque disruption mechanism induced by the SN or the interstellar radiation field. « less
Authors:
; ; ; ; ; ; ; ; ; ;
Award ID(s):
1715133 1817099 1813825
Publication Date:
NSF-PAR ID:
10351315
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
509
Issue:
4
Page Range or eLocation-ID:
6028 to 6046
ISSN:
0035-8711
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    While conventional Type Ia supernova (SN Ia) cosmology analyses rely primarily on rest-frame optical light curves to determine distances, SNe Ia are excellent standard candles in near-infrared (NIR) light, which is significantly less sensitive to dust extinction. An SN Ia spectral energy distribution (SED) model capable of fitting rest-frame NIR observations is necessary to fully leverage current and future SN Ia data sets from ground- and space-based telescopes including HST, LSST, JWST, and RST. We construct a hierarchical Bayesian model for SN Ia SEDs, continuous over time and wavelength, from the optical to NIR (B through H, or $0.35{-}1.8\, \mu$m). We model the SED as a combination of physically distinct host galaxy dust and intrinsic spectral components. The distribution of intrinsic SEDs over time and wavelength is modelled with probabilistic functional principal components and the covariance of residual functions. We train the model on a nearby sample of 79 SNe Ia with joint optical and NIR light curves by sampling the global posterior distribution over dust and intrinsic latent variables, SED components and population hyperparameters. Photometric distances of SNe Ia with NIR data near maximum obtain a total RMS error of 0.10 mag with our BayeSN model, compared tomore »0.13–0.14 mag with SALT2 and SNooPy for the same sample. Jointly fitting the optical and NIR data of the full sample up to moderate reddening (host E(B − V) < 0.4) for a global host dust law, we find RV = 2.9 ± 0.2, consistent with the Milky Way average.

    « less
  2. Abstract We present observations of three core-collapse supernovae (CCSNe) in elliptical hosts, detected by the Zwicky Transient Facility Bright Transient Survey (BTS). SN 2019ape is a SN Ic that exploded in the main body of a typical elliptical galaxy. Its properties are consistent with an explosion of a regular SN Ic progenitor. A secondary g -band light-curve peak could indicate interaction of the ejecta with circumstellar material (CSM). An H α -emitting source at the explosion site suggests a residual local star formation origin. SN 2018fsh and SN 2020uik are SNe II which exploded in the outskirts of elliptical galaxies. SN 2020uik shows typical spectra for SNe II, while SN 2018fsh shows a boxy nebular H α profile, a signature of CSM interaction. We combine these 3 SNe with 7 events from the literature and analyze their hosts as a sample. We present multi-wavelength photometry of the hosts, and compare this to archival photometry of all BTS hosts. Using the spectroscopically complete BTS, we conclude that 0.3 % − 0.1 + 0.3 of all CCSNe occur in elliptical galaxies. We derive star formation rates and stellar masses for the host galaxies and compare them to the properties of other SNmore »hosts. We show that CCSNe in ellipticals have larger physical separations from their hosts compared to SNe Ia in elliptical galaxies, and discuss implications for star-forming activity in elliptical galaxies.« less
  3. ABSTRACT

    Telescopes are now able to resolve dust polarization across circumstellar discs at multiple wavelengths, allowing the study of the polarization spectrum. Most discs show clear evidence of dust scattering through their unidirectional polarization pattern typically at the shorter wavelength of $\sim 870 \, \mu$m. However, certain discs show an elliptical pattern at ∼3 mm, which is likely due to aligned grains. With HL Tau, its polarization pattern at ∼1.3 mm shows a transition between the two patterns making it the first example to reveal such transition. We use the T-matrix method to model elongated dust grains and properly treat scattering of aligned non-spherical grains with a plane-parallel slab model. We demonstrate that a change in optical depth can naturally explain the polarization transition of HL Tau. At low optical depths, the thermal polarization dominates, while at high optical depths, dichroic extinction effectively takes out the thermal polarization and scattering polarization dominates. Motivated by results from the plane-parallel slab, we develop a simple technique to disentangle thermal polarization of the aligned grains T0 and polarization due to scattering S using the azimuthal variation of the polarization fraction. We find that, with increasing wavelength, the fractional polarization spectrum of the scattering component Smore »decreases, while the thermal component T0 increases, which is expected since the optical depth decreases. We find several other sources similar to HL Tau that can be explained by azimuthally aligned scattering prolate grains when including optical depth effects. In addition, we explore how spirally aligned grains with scattering can appear in polarization images.

    « less
  4. Using Zwicky Transient Facility (ZTF) observations, we identify a pair of "sibling" Type Ia supernovae (SNe Ia), i.e., hosted by the same galaxy at z = 0.0541. They exploded within 200 days from each other at a separation of 0.6″ corresponding to a projected distance of only 0.6 kpc. Performing SALT2 light curve fits to the gri ZTF photometry, we show that for these equally distant "standardizable candles", there is a difference of 2 magnitudes in their rest frame B-band peaks, and the fainter SN has a significantly red SALT2 colour c=0.57± 0.04, while the stretch values x1 of the two SNe are similar, suggesting that the fainter SN is attenuated by dust in the interstellar medium of the host galaxy. We use these measurements to infer the SALT2 colour standardization parameter, β = 3.5 ± 0.3, independent of the underlying cosmology and Malmquist bias. Assuming the colour excess is entirely due to dust, the result differs by 2σ from the average Milky-Way total-to-selective extinction ratio, but is in good agreement with the colour-brightness corrections empirically derived from the most recent SN Ia Hubble-Lemaitre diagram fits. Thus we suggest that SN "siblings", which will increasingly be discovered in the comingmore »years, can be used to probe the validity of the colour and lightcurve shape corrections using in SN Ia cosmology while avoiding important systematic effects in their inference from global multi-parameter fits to inhomogeneous data-sets, and also help constrain the role of interstellar dust in SN Ia cosmology.« less
  5. Abstract We describe the Gems of the Galaxy Zoos (Zoo Gems) project, a gap-filler project using short windows in the Hubble Space Telescope's schedule. As with previous snapshot programs, targets are taken from a pool based on position; we combine objects selected by volunteers in both the Galaxy Zoo and Radio Galaxy Zoo citizen-science projects. Zoo Gems uses exposures with the Advanced Camera for Surveys to address a broad range of topics in galaxy morphology, interstellar-medium content, host galaxies of active galactic nuclei, and galaxy evolution. Science cases include studying galaxy interactions, backlit dust in galaxies, post-starburst systems, rings and peculiar spiral patterns, outliers from the usual color–morphology relation, Green Pea compact starburst systems, double radio sources with spiral host galaxies, and extended emission-line regions around active galactic nuclei. For many of these science categories, final selection of targets from a larger list used public input via a voting process. Highlights to date include the prevalence of tightly wound spiral structure in blue, apparently early-type galaxies, a nearly complete Einstein ring from a group lens, redder components at lower surface brightness surrounding compact Green Pea starbursts, and high-probability examples of spiral galaxies hosting large double radio sources.