skip to main content

This content will become publicly available on August 5, 2023

Title: Spatially resolved gas-phase metallicity in FIRE-2 dwarfs: late-time evolution of metallicity relations in simulations with feedback and mergers
ABSTRACT We present an analysis of spatially resolved gas-phase metallicity relations in five dwarf galaxies ($\rm \mathit{M}_{halo} \approx 10^{11}\, {\rm M}_\odot$, $\rm \mathit{M}_\star \approx 10^{8.8}{-}10^{9.6}\, {\rm M}_\odot$) from the FIRE-2 (Feedback in Realistic Environments) cosmological zoom-in simulation suite, which include an explicit model for sub-grid turbulent mixing of metals in gas, near z ≈ 0, over a period of 1.4 Gyr, and compare our findings with observations. While these dwarf galaxies represent a diverse sample, we find that all simulated galaxies match the observed mass–metallicity (MZR) and mass–metallicity gradient (MZGR) relations. We note that in all five galaxies, the metallicities are effectively identical between phases of the interstellar medium (ISM), with 95 ${{\ \rm per\ cent}}$ of the gas being within ±0.1 dex between the cold and dense gas (T < 500 K and nH > 1 cm−3), ionized gas (near the H αT ≈ 104 K ridge-line), and nebular regions (ionized gas where the 10 Myr-averaged star formation rate is non-zero). We find that most of the scatter in relative metallicity between cold dense gas and ionized gas/nebular regions can be attributed to either local starburst events or metal-poor inflows. We also note the presence of a major merger in one of our galaxies, more » m11e, with a substantial impact on the metallicity distribution in the spatially resolved map, showing two strong metallicity peaks and triggering a starburst in the main galaxy. « less
Authors:
; ; ; ; ; ;
Award ID(s):
2107772 2108318
Publication Date:
NSF-PAR ID:
10351388
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
515
Issue:
3
Page Range or eLocation-ID:
3555 to 3576
ISSN:
0035-8711
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We present an empirical relation between the cold gas surface density (Σgas) and the optical extinction (AV) in a sample of 103 galaxies from the Extragalactic Database for Galaxy Evolution (EDGE) survey. This survey provides CARMA interferometric CO observations for 126 galaxies included in the Calar Alto Legacy Integral Field Area (CALIFA) survey. The matched, spatially resolved nature of these data sets allows us to derive the Σgas–AV relation on global, radial, and kpc (spaxel) scales. We determine AV from the Balmer decrement (H α/H β). We find that the best fit for this relation is $\Sigma _{\rm gas}\,(\rm {M_\odot \,pc}^{-2}) \sim 26 \times {\rm \mathit{ A}_\mathit{ V}} \,(\rm mag)$, and that it does not depend on the spatial scale used for the fit. However, the scatter in the fits increases as we probe smaller spatial scales, reflecting the complex relative spatial distributions of stars, gas, and dust. We investigate the Σgas/AV ratio on radial and spaxel scales as a function of $\mathrm{EW(H\,\alpha)}$. We find that at larger values of $\mathrm{EW({H\,\alpha })}$ (i.e. actively star-forming regions) this ratio tends to converge to twice the value expected for a foreground dust screen geometry (∼30 $\mathrm{M_{\odot } \, pc^{-2} \, mag^{-1}}$). On radial scales, we domore »not find a significant relation between the Σgas/AV ratio and the ionized gas metallicity. We contrast our estimates of Σgas using AV with compilations in the literature of the gas fraction on global and radial scales as well as with well-known scaling relations such as the radial star formation law and the Σgas–Σ* relation. These tests show that optical extinction is a reliable proxy for estimating Σgas in the absence of direct sub/millimeter observations of the cold gas.

    « less
  2. ABSTRACT

    We present new [${\rm O\, {\small III}}$] 88-$\mu \mathrm{{m}}$ observations of five bright z ∼ 7 Lyman-break galaxies spectroscopically confirmed by ALMA through [${\rm C\, {\small II}}$] 158 $\mu \mathrm{{m}}$, unlike recent [${\rm O\, {\small III}}$] detections where Lyman α was used. This nearly doubles the sample of Epoch of Reionization galaxies with robust (5σ) [${\rm C\, {\small II}}$] and [${\rm O\, {\small III}}$] detections. We perform a multiwavelength comparison with new deep HST images of the rest-frame UV, whose compact morphology aligns well with [${\rm O\, {\small III}}$] tracing ionized gas. In contrast, we find more spatially extended [${\rm C\, {\small II}}$] emission likely produced in neutral gas, as indicated by an [${\rm N\, {\small II}}$] 205-$\mu \mathrm{{m}}$ non-detection in one source. We find a correlation between the optical ${[{\rm O\, {\small III}}]}+ {\mathrm{H\,\beta }}$ equivalent width and [${\rm O\, {\small III}}$]/[${\rm C\, {\small II}}$], as seen in local metal-poor dwarf galaxies. cloudy models of a nebula of typical density harbouring a young stellar population with a high-ionization parameter adequately reproduce the observed lines. Surprisingly, however, our models fail to reproduce the strength of [${\rm O\, {\small III}}$] 88-$\mu \mathrm{{m}}$, unless we assume an α/Fe enhancement and near-solar nebular oxygenmore »abundance. On spatially resolved scales, we find [${\rm O\, {\small III}}$]/[${\rm C\, {\small II}}$] shows a tentative anticorrelation with infrared excess, LIR/LUV, also seen on global scales in the local Universe. Finally, we introduce the far-infrared spectral energy distribution fitting code mercurius to show that dust-continuum measurements of one source appear to favour a low dust temperature and correspondingly high dust mass. This implies a high stellar metallicity yield and may point towards the need of dust production or grain-growth mechanisms beyond supernovae.

    « less
  3. ABSTRACT We present and study a large suite of high-resolution cosmological zoom-in simulations, using the FIRE-2 treatment of mechanical and radiative feedback from massive stars, together with explicit treatment of magnetic fields, anisotropic conduction and viscosity (accounting for saturation and limitation by plasma instabilities at high β), and cosmic rays (CRs) injected in supernovae shocks (including anisotropic diffusion, streaming, adiabatic, hadronic and Coulomb losses). We survey systems from ultrafaint dwarf ($M_{\ast }\sim 10^{4}\, \mathrm{M}_{\odot }$, $M_{\rm halo}\sim 10^{9}\, \mathrm{M}_{\odot }$) through Milky Way/Local Group (MW/LG) masses, systematically vary uncertain CR parameters (e.g. the diffusion coefficient κ and streaming velocity), and study a broad ensemble of galaxy properties [masses, star formation (SF) histories, mass profiles, phase structure, morphologies, etc.]. We confirm previous conclusions that magnetic fields, conduction, and viscosity on resolved ($\gtrsim 1\,$ pc) scales have only small effects on bulk galaxy properties. CRs have relatively weak effects on all galaxy properties studied in dwarfs ($M_{\ast } \ll 10^{10}\, \mathrm{M}_{\odot }$, $M_{\rm halo} \lesssim 10^{11}\, \mathrm{M}_{\odot }$), or at high redshifts (z ≳ 1–2), for any physically reasonable parameters. However, at higher masses ($M_{\rm halo} \gtrsim 10^{11}\, \mathrm{M}_{\odot }$) and z ≲ 1–2, CRs can suppress SF and stellar masses by factorsmore »∼2–4, given reasonable injection efficiencies and relatively high effective diffusion coefficients $\kappa \gtrsim 3\times 10^{29}\, {\rm cm^{2}\, s^{-1}}$. At lower κ, CRs take too long to escape dense star-forming gas and lose their energy to collisional hadronic losses, producing negligible effects on galaxies and violating empirical constraints from spallation and γ-ray emission. At much higher κ CRs escape too efficiently to have appreciable effects even in the CGM. But around $\kappa \sim 3\times 10^{29}\, {\rm cm^{2}\, s^{-1}}$, CRs escape the galaxy and build up a CR-pressure-dominated halo which maintains approximate virial equilibrium and supports relatively dense, cool (T ≪ 106 K) gas that would otherwise rain on to the galaxy. CR ‘heating’ (from collisional and streaming losses) is never dominant.« less
  4. ABSTRACT

    The nebular recombination line H α is widely used as a star formation rate (SFR) indicator in the local and high-redshift Universe. We present a detailed H α radiative transfer study of high-resolution isolated Milky-Way and Large Magellanic Cloud simulations that include radiative transfer, non-equilibrium thermochemistry, and dust evolution. We focus on the spatial morphology and temporal variability of the H α emission, and its connection to the underlying gas and star formation properties. The H α and H β radial and vertical surface brightness profiles are in excellent agreement with observations of nearby galaxies. We find that the fraction of H α emission from collisional excitation amounts to fcol ∼ 5–$10{{\ \rm per\ cent}}$, only weakly dependent on radius and vertical height, and that scattering boosts the H α luminosity by $\sim 40{{\ \rm per\ cent}}$. The dust correction via the Balmer decrement works well (intrinsic H α emission recoverable within 25 per cent), though the dust attenuation law depends on the amount of attenuation itself both on spatially resolved and integrated scales. Important for the understanding of the H α–SFR connection is the dust and helium absorption of ionizing radiation (Lyman continuum [LyC] photons), which are about $f_{\rm abs}\approx 28{{\ \rm per\ cent}}$ and $f_{\rm He}\approx 9{{\ \rmmore »per\ cent}}$, respectively. Together with an escape fraction of $f_{\rm esc}\approx 6{{\ \rm per\ cent}}$, this reduces the available budget for hydrogen line emission by nearly half ($f_{\rm H}\approx 57{{\ \rm per\ cent}}$). We discuss the impact of the diffuse ionized gas, showing – among other things – that the extraplanar H α emission is powered by LyC photons escaping the disc. Future applications of this framework to cosmological (zoom-in) simulations will assist in the interpretation of spectroscopy of high-redshift galaxies with the upcoming James Webb Space Telescope.

    « less
  5. Abstract We report the first spatially resolved measurements of gas-phase metallicity radial gradients in star-forming galaxies in overdense environments at z ≳ 2. The spectroscopic data are acquired by the MAMMOTH-Grism survey, a Hubble Space Telescope (HST) cycle 28 medium program. This program is obtaining 45 orbits of WFC3/IR grism spectroscopy in the density peak regions of three massive galaxy protoclusters (BOSS 1244, BOSS 1542, and BOSS 1441) at z = 2–3. Our sample in the BOSS 1244 field consists of 20 galaxies with stellar mass ranging from 10 9.0 to 10 10.3 M ⊙ , star formation rate (SFR) from 10 to 240 M ⊙ yr −1 , and global gas-phase metallicity ( 12 + log ( O / H ) ) from 8.2 to 8.6. At 1 σ confidence level, 2/20 galaxies in our sample show positive (inverted) gradients—the relative abundance of oxygen increasing with galactocentric radius, opposite the usual trend. Furthermore, 1/20 shows negative gradients, and 17/20 are consistent with flat gradients. This high fraction of flat/inverted gradients is uncommon in simulations and previous observations conducted in blank fields at similar redshifts. To understand this, we investigate the correlations among various observed properties of our sample galaxies.more »We find an anticorrelation between metallicity gradient and global metallicity of our galaxies residing in extreme overdensities, and a marked deficiency of metallicity in our massive galaxies as compared to their coeval field counterparts. We conclude that the cold-mode gas accretion plays an active role in shaping the chemical evolution of galaxies in the protocluster environments, diluting their central chemical abundance, and flattening/inverting their metallicity gradients.« less