skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: Energy-based continuous inverse optimal control.
The problem of continuous inverse optimal control (over finite time horizon) is to learn the unknown cost function over the sequence of continuous control variables from expert demonstrations. In this article, we study this fundamental problem in the framework of energy-based model, where the observed expert trajectories are assumed to be random samples from a probability density function defined as the exponential of the negative cost function up to a normalizing constant. The parameters of the cost function are learned by maximum likelihood via an “analysis by synthesis” scheme, which iterates (1) synthesis step: sample the synthesized trajectories from the current probability density using the Langevin dynamics via back-propagation through time, and (2) analysis step: update the model parameters based on the statistical difference between the synthesized trajectories and the observed trajectories. Given the fact that an efficient optimization algorithm is usually available for an optimal control problem, we also consider a convenient approximation of the above learning method, where we replace the sampling in the synthesis step by optimization. Moreover, to make the sampling or optimization more efficient, we propose to train the energy-based model simultaneously with a top-down trajectory generator via cooperative learning, where the trajectory generator is used to fast initialize the synthesis step of the energy-based model. We demonstrate the proposed methods on autonomous driving tasks, and show that they can learn suitable cost functions for optimal control.  more » « less
Award ID(s):
2015577
NSF-PAR ID:
10351397
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
IEEE transactions on neural networks and learning systems
ISSN:
2162-237X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Designing reward functions is a difficult task in AI and robotics. The complex task of directly specifying all the desirable behaviors a robot needs to optimize often proves challenging for humans. A popular solution is to learn reward functions using expert demonstrations. This approach, however, is fraught with many challenges. Some methods require heavily structured models, for example, reward functions that are linear in some predefined set of features, while others adopt less structured reward functions that may necessitate tremendous amounts of data. Moreover, it is difficult for humans to provide demonstrations on robots with high degrees of freedom, or even quantifying reward values for given trajectories. To address these challenges, we present a preference-based learning approach, where human feedback is in the form of comparisons between trajectories. We do not assume highly constrained structures on the reward function. Instead, we employ a Gaussian process to model the reward function and propose a mathematical formulation to actively fit the model using only human preferences. Our approach enables us to tackle both inflexibility and data-inefficiency problems within a preference-based learning framework. We further analyze our algorithm in comparison to several baselines on reward optimization, where the goal is to find the optimal robot trajectory in a data-efficient way instead of learning the reward function for every possible trajectory. Our results in three different simulation experiments and a user study show our approach can efficiently learn expressive reward functions for robotic tasks, and outperform the baselines in both reward learning and reward optimization.

     
    more » « less
  2. This work studies online learning-based trajectory planning for multiple autonomous underwater vehicles (AUVs) to estimate a water parameter field of interest in the under-ice environment. A centralized system is considered, where several fixed access points on the ice layer are introduced as gateways for communications between the AUVs and a remote data fusion center. We model the water parameter field of interest as a Gaussian process with unknown hyper-parameters. The AUV trajectories for sampling are determined on an epoch-by-epoch basis. At the end of each epoch, the access points relay the observed field samples from all the AUVs to the fusion center, which computes the posterior distribution of the field based on the Gaussian process regression and estimates the field hyper-parameters. The optimal trajectories of all the AUVs in the next epoch are determined to maximize a long-term reward that is defined based on the field uncertainty reduction and the AUV mobility cost, subject to the kinematics constraint, the communication constraint and the sensing area constraint. We formulate the adaptive trajectory planning problem as a Markov decision process (MDP). A reinforcement learning-based online learning algorithm is designed to determine the optimal AUV trajectories in a constrained continuous space. Simulation results show that the proposed learning-based trajectory planning algorithm has performance similar to a benchmark method that assumes perfect knowledge of the field hyper-parameters. 
    more » « less
  3. This data set for the manuscript entitled "Design of Peptides that Fold and Self-Assemble on Graphite" includes all files needed to run and analyze the simulations described in the this manuscript in the molecular dynamics software NAMD, as well as the output of the simulations. The files are organized into directories corresponding to the figures of the main text and supporting information. They include molecular model structure files (NAMD psf or Amber prmtop format), force field parameter files (in CHARMM format), initial atomic coordinates (pdb format), NAMD configuration files, Colvars configuration files, NAMD log files, and NAMD output including restart files (in binary NAMD format) and trajectories in dcd format (downsampled to 10 ns per frame). Analysis is controlled by shell scripts (Bash-compatible) that call VMD Tcl scripts or python scripts. These scripts and their output are also included.

    Version: 2.0

    Changes versus version 1.0 are the addition of the free energy of folding, adsorption, and pairing calculations (Sim_Figure-7) and shifting of the figure numbers to accommodate this addition.


    Conventions Used in These Files
    ===============================

    Structure Files
    ----------------
    - graph_*.psf or sol_*.psf (original NAMD (XPLOR?) format psf file including atom details (type, charge, mass), as well as definitions of bonds, angles, dihedrals, and impropers for each dipeptide.)

    - graph_*.pdb or sol_*.pdb (initial coordinates before equilibration)
    - repart_*.psf (same as the above psf files, but the masses of non-water hydrogen atoms have been repartitioned by VMD script repartitionMass.tcl)
    - freeTop_*.pdb (same as the above pdb files, but the carbons of the lower graphene layer have been placed at a single z value and marked for restraints in NAMD)
    - amber_*.prmtop (combined topology and parameter files for Amber force field simulations)
    - repart_amber_*.prmtop (same as the above prmtop files, but the masses of non-water hydrogen atoms have been repartitioned by ParmEd)

    Force Field Parameters
    ----------------------
    CHARMM format parameter files:
    - par_all36m_prot.prm (CHARMM36m FF for proteins)
    - par_all36_cgenff_no_nbfix.prm (CGenFF v4.4 for graphene) The NBFIX parameters are commented out since they are only needed for aromatic halogens and we use only the CG2R61 type for graphene.
    - toppar_water_ions_prot_cgenff.str (CHARMM water and ions with NBFIX parameters needed for protein and CGenFF included and others commented out)

    Template NAMD Configuration Files
    ---------------------------------
    These contain the most commonly used simulation parameters. They are called by the other NAMD configuration files (which are in the namd/ subdirectory):
    - template_min.namd (minimization)
    - template_eq.namd (NPT equilibration with lower graphene fixed)
    - template_abf.namd (for adaptive biasing force)

    Minimization
    -------------
    - namd/min_*.0.namd

    Equilibration
    -------------
    - namd/eq_*.0.namd

    Adaptive biasing force calculations
    -----------------------------------
    - namd/eabfZRest7_graph_chp1404.0.namd
    - namd/eabfZRest7_graph_chp1404.1.namd (continuation of eabfZRest7_graph_chp1404.0.namd)

    Log Files
    ---------
    For each NAMD configuration file given in the last two sections, there is a log file with the same prefix, which gives the text output of NAMD. For instance, the output of namd/eabfZRest7_graph_chp1404.0.namd is eabfZRest7_graph_chp1404.0.log.

    Simulation Output
    -----------------
    The simulation output files (which match the names of the NAMD configuration files) are in the output/ directory. Files with the extensions .coor, .vel, and .xsc are coordinates in NAMD binary format, velocities in NAMD binary format, and extended system information (including cell size) in text format. Files with the extension .dcd give the trajectory of the atomic coorinates over time (and also include system cell information). Due to storage limitations, large DCD files have been omitted or replaced with new DCD files having the prefix stride50_ including only every 50 frames. The time between frames in these files is 50 * 50000 steps/frame * 4 fs/step = 10 ns. The system cell trajectory is also included for the NPT runs are output/eq_*.xst.

    Scripts
    -------
    Files with the .sh extension can be found throughout. These usually provide the highest level control for submission of simulations and analysis. Look to these as a guide to what is happening. If there are scripts with step1_*.sh and step2_*.sh, they are intended to be run in order, with step1_*.sh first.


    CONTENTS
    ========

    The directory contents are as follows. The directories Sim_Figure-1 and Sim_Figure-8 include README.txt files that describe the files and naming conventions used throughout this data set.

    Sim_Figure-1: Simulations of N-acetylated C-amidated amino acids (Ac-X-NHMe) at the graphite–water interface.

    Sim_Figure-2: Simulations of different peptide designs (including acyclic, disulfide cyclized, and N-to-C cyclized) at the graphite–water interface.

    Sim_Figure-3: MM-GBSA calculations of different peptide sequences for a folded conformation and 5 misfolded/unfolded conformations.

    Sim_Figure-4: Simulation of four peptide molecules with the sequence cyc(GTGSGTG-GPGG-GCGTGTG-SGPG) at the graphite–water interface at 370 K.

    Sim_Figure-5: Simulation of four peptide molecules with the sequence cyc(GTGSGTG-GPGG-GCGTGTG-SGPG) at the graphite–water interface at 295 K.

    Sim_Figure-5_replica: Temperature replica exchange molecular dynamics simulations for the peptide cyc(GTGSGTG-GPGG-GCGTGTG-SGPG) with 20 replicas for temperatures from 295 to 454 K.

    Sim_Figure-6: Simulation of the peptide molecule cyc(GTGSGTG-GPGG-GCGTGTG-SGPG) in free solution (no graphite).

    Sim_Figure-7: Free energy calculations for folding, adsorption, and pairing for the peptide CHP1404 (sequence: cyc(GTGSGTG-GPGG-GCGTGTG-SGPG)). For folding, we calculate the PMF as function of RMSD by replica-exchange umbrella sampling (in the subdirectory Folding_CHP1404_Graphene/). We make the same calculation in solution, which required 3 seperate replica-exchange umbrella sampling calculations (in the subdirectory Folding_CHP1404_Solution/). Both PMF of RMSD calculations for the scrambled peptide are in Folding_scram1404/. For adsorption, calculation of the PMF for the orientational restraints and the calculation of the PMF along z (the distance between the graphene sheet and the center of mass of the peptide) are in Adsorption_CHP1404/ and Adsorption_scram1404/. The actual calculation of the free energy is done by a shell script ("doRestraintEnergyError.sh") in the 1_free_energy/ subsubdirectory. Processing of the PMFs must be done first in the 0_pmf/ subsubdirectory. Finally, files for free energy calculations of pair formation for CHP1404 are found in the Pair/ subdirectory.

    Sim_Figure-8: Simulation of four peptide molecules with the sequence cyc(GTGSGTG-GPGG-GCGTGTG-SGPG) where the peptides are far above the graphene–water interface in the initial configuration.

    Sim_Figure-9: Two replicates of a simulation of nine peptide molecules with the sequence cyc(GTGSGTG-GPGG-GCGTGTG-SGPG) at the graphite–water interface at 370 K.

    Sim_Figure-9_scrambled: Two replicates of a simulation of nine peptide molecules with the control sequence cyc(GGTPTTGGGGGGSGGPSGTGGC) at the graphite–water interface at 370 K.

    Sim_Figure-10: Adaptive biasing for calculation of the free energy of the folded peptide as a function of the angle between its long axis and the zigzag directions of the underlying graphene sheet.

     

    This material is based upon work supported by the US National Science Foundation under grant no. DMR-1945589. A majority of the computing for this project was performed on the Beocat Research Cluster at Kansas State University, which is funded in part by NSF grants CHE-1726332, CNS-1006860, EPS-1006860, and EPS-0919443. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1548562, through allocation BIO200030. 
    more » « less
  4. Human trajectory prediction is critical for autonomous platforms like self-driving cars or social robots. We present a latent belief energy-based model (LB-EBM) for diverse human trajectory forecast. LB-EBM is a probabilistic model with cost function defined in the latent space to account for the movement history and social context. The low dimensionality of the latent space and the high expressivity of the EBM make it easy for the model to capture the multimodality of pedestrian trajectory distributions. LB-EBM is learned from expert demonstrations (i.e., human trajectories) projected into the latent space. Sampling from or optimizing the learned LB-EBM yields a belief vector which is used to make a path plan, which then in turn helps to predict a long-range trajectory. The effectiveness of LB-EBM and the two-step approach are supported by strong empirical results. Our model is able to make accurate, multi-modal, and social compliant trajectory predictions and improves over prior state-of-the-arts performance on the Stanford Drone trajectory prediction benchmark by 10:9% and on the ETH-UCY benchmark by 27:6%. 
    more » « less
  5. Trajectory optimization o↵ers mature tools for motion planning in high-dimensional spaces under dynamic constraints. However, when facing complex configuration spaces, cluttered with obstacles, roboticists typically fall back to sampling-based planners that struggle in very high dimensions and with continuous di↵erential constraints. Indeed, obstacles are the source of many textbook examples of problematic nonconvexities in the trajectory-optimization prob- lem. Here we show that convex optimization can, in fact, be used to reliably plan trajectories around obstacles. Specifically, we consider planning problems with collision-avoidance constraints, as well as cost penalties and hard constraints on the shape, the duration, and the velocity of the trajectory. Combining the properties of B ́ezier curves with a recently-proposed framework for finding shortest paths in Graphs of Convex Sets (GCS), we formulate the planning problem as a compact mixed-integer optimization. In stark contrast with existing mixed-integer planners, the convex relaxation of our programs is very tight, and a cheap round- ing of its solution is typically sufficient to design globally-optimal trajectories. This reduces the mixed-integer program back to a simple convex optimization, and automatically provides optimality bounds for the planned trajectories. We name the proposed planner GCS, after its underlying optimization framework. We demonstrate GCS in simulation on a variety of robotic platforms, including a quadrotor flying through buildings and a dual-arm manipulator (with fourteen degrees of freedom) moving in a confined space. Using numerical experiments on a seven-degree-of-freedom manipulator, we show that GCS can outperform widely-used sampling-based planners by finding higher-quality trajectories in less time. 
    more » « less