skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Measure Estimation in the Barycentric Coding Model
This paper considers the problem of measure estimation under the barycentric coding model (BCM), in which an unknown measure is assumed to belong to the set of Wasserstein-2 barycenters of a finite set of known measures. Estimating a measure under this model is equivalent to estimating the unknown barycentric coordinates. We provide novel geometrical, statistical, and computational insights for measure estimation under the BCM, consisting of three main results. Our first main result leverages the Riemannian geometry of Wasserstein-2 space to provide a procedure for recovering the barycentric coordinates as the solution to a quadratic optimization problem assuming access to the true reference measures. The essential geometric insight is that the parameters of this quadratic problem are determined by inner products between the optimal displacement maps from the given measure to the reference measures defining the BCM. Our second main result then establishes an algorithm for solving for the coordinates in the BCM when all the measures are observed empirically via i.i.d. samples. We prove precise rates of convergence for this algorithm—determined by the smoothness of the underlying measures and their dimensionality—thereby guaranteeing its statistical consistency. Finally, we demonstrate the utility of the BCM and associated estimation procedures in three application areas: (i) covariance estimation for Gaussian measures; (ii) image processing; and (iii) natural language processing.  more » « less
Award ID(s):
1912737 1924513
PAR ID:
10351459
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Chaudhuri, K.; Stefanie, J.; Song, L.; Szepesvari, C.; Niu, G; Sabato, S.
Date Published:
Journal Name:
Proceedings of the 39th International Conference on Machine Learning
Volume:
162
Page Range / eLocation ID:
23781-23803
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We consider the problem of estimating the Wasserstein distance between the empirical measure and a set of probability measures whose expectations over a class of functions (hypothesis class) are constrained. If this class is sufficiently rich to characterize a particular distribution (e.g., all Lipschitz functions), then our formulation recovers the Wasserstein distance to such a distribution. We establish a strong duality result that generalizes the celebrated Kantorovich-Rubinstein duality. We also show that our formulation can be used to beat the curse of dimensionality, which is well known to affect the rates of statistical convergence of the empirical Wasserstein distance. In particular, examples of infinite-dimensional hypothesis classes are presented, informed by a complex correlation structure, for which it is shown that the empirical Wasserstein distance to such classes converges to zero at the standard parametric rate. Our formulation provides insights that help clarify why, despite the curse of dimensionality, the Wasserstein distance enjoys favorable empirical performance across a wide range of statistical applications. 
    more » « less
  2. We study the problem of selecting most informative subset of a large observation set to enable accurate estimation of unknown parameters. This problem arises in a variety of settings in machine learning and signal processing including feature selection, phase retrieval, and target localization. Since for quadratic measurement models the moment matrix of the optimal estimator is generally unknown, majority of prior work resorts to approximation techniques such as linearization of the observation model to optimize the alphabetical optimality criteria of an approximate moment matrix. Conversely, by exploiting a connection to the classical Van Trees’ inequality, we derive new alphabetical optimality criteria without distorting the relational structure of the observation model. We further show that under certain conditions on parameters of the problem these optimality criteria are monotone and (weak) submodular set functions. These results enable us to develop an efficient greedy observation selection algorithm uniquely tailored for quadratic models, and provide theoretical bounds on its achievable utility. 
    more » « less
  3. We propose a variational technique to optimize for generalized barycentric coordinates that offers additional control compared to existing models. Prior work represents barycentric coordinates using meshes or closed-form formulae, limiting the choice of objective function. In contrast, we directly parameterize the continuous function mapping any coordinate in a polytope’s interior to its barycentric coordinates using a neural field. Enabled by our theoretical characterization of barycentric coordinates, we construct neural fields parameterizing valid coordinates. We demonstrate flexibility using various objective functions, validate our algorithm, and present several applications. 
    more » « less
  4. We propose a variational technique to optimize for generalized barycentric coordinates that offers additional control compared to existing models. Prior work represents barycentric coordinates using meshes or closed-form formulae, limiting the choice of objective function. In contrast, we directly parameterize the continuous function mapping any coordinate in a polytope’s interior to its barycentric coordinates using a neural field. Enabled by our theoretical characterization of barycentric coordinates, we construct neural fields parameterizing valid coordinates. We demonstrate flexibility using various objective functions, validate our algorithm, and present several applications. 
    more » « less
  5. Kumar, Amit; Ron-Zewi, Noga (Ed.)
    Estimating the size of the union of a stream of sets S₁, S₂, …, S_M where each set is a subset of a known universe Ω is a fundamental problem in data streaming. This problem naturally generalizes the well-studied 𝖥₀ estimation problem in the streaming literature, where each set contains a single element from the universe. We consider the general case when the sets S_i can be succinctly represented and allow efficient membership, cardinality, and sampling queries (called a Delphic family of sets). A notable example in this framework is the Klee’s Measure Problem (KMP), where every set S_i is an axis-parallel rectangle in d-dimensional spaces (Ω = [Δ]^d where [Δ] := {1, … ,Δ} and Δ ∈ ℕ). Recently, Meel, Chakraborty, and Vinodchandran (PODS-21, PODS-22) designed a streaming algorithm for (ε,δ)-estimation of the size of the union of set streams over Delphic family with space and update time complexity O((log³|Ω|)/ε² ⋅ log 1/δ) and Õ((log⁴|Ω|)/ε² ⋅ log 1/(δ)), respectively. This work presents a new, sampling-based algorithm for estimating the size of the union of Delphic sets that has space and update time complexity Õ((log²|Ω|)/ε² ⋅ log 1/(δ)). This improves the space complexity bound by a log|Ω| factor and update time complexity bound by a log² |Ω| factor. A critical question is whether quadratic dependence of log|Ω| on space and update time complexities is necessary. Specifically, can we design a streaming algorithm for estimating the size of the union of sets over Delphic family with space and complexity linear in log|Ω| and update time poly(log|Ω|)? While this appears technically challenging, we show that establishing a lower bound of ω(log|Ω|) with poly(log|Ω|) update time is beyond the reach of current techniques. Specifically, we show that under certain hard-to-prove computational complexity hypothesis, there is a streaming algorithm for the problem with optimal space complexity O(log|Ω|) and update time poly(log(|Ω|)). Thus, establishing a space lower bound of ω(log|Ω|) will lead to break-through complexity class separation results. 
    more » « less