- Award ID(s):
- 1901827
- NSF-PAR ID:
- 10351520
- Date Published:
- Journal Name:
- The American mineralogist
- Volume:
- 107
- ISSN:
- 0003-004X
- Page Range / eLocation ID:
- 1116-1132
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Interpretation of geochronological and petrological data from partially-melted granulite is challenging. However, integration of multiple chronometers and mineral assemblage diagrams (MAD) can be used to estimate the nature and duration of processes. Excellent lower-crustal exposures of garnet granulite from the Malaspina Pluton, Fiordland New Zealand provide an ideal place to employ this kitchen sink approach. We use zircon U-Pb ages from LA-ICPMS, SHRIMP-RG, and CA-TIMS, garnet Lu-Hf and Sm-Nd ages, and MAD in order to evaluate local partial melting vs. melt injection, equilibrium volumes, P-T conditions, and the duration of lower crustal thermal events. Host diorite (H), garnet-clinopyroxene reaction zones (GRZ), coarse garnet selvages, and tonalite veins provide a record of intrusion and granulite facies partial melting. Zircon U-Pb ages range from 123 to 107 Ma (all); LA-ICPMS ages contain the entire range; CA-TIMS ages range from 118.30±0.13 to 115.7±0.18 Ma; and SHRIMP-RG ages range from 121.4±2 to 109.8±1.8 Ma. The latter two techniques are interpreted to indicate primary igneous crystallization from ~119 to ~116 Ma and the youngest ~110 Ma ages are interpreted as metamorphic zircon growth. Garnet ages for ~1 cm grains are ~113 Ma (Lu-Hf & Sm-Nd) and record metamorphic growth, and <0.3 mm grains with Sm-Nd ages from 113 to 104 Ma reflect high temperature intracrystalline diffusion and isotopic closure during cooling to amphibolite facies. Zircon trace-element compositions indicate 2 distinct crystallization trends reflecting evolution of primary magma batches. MAD indicate that garnet was not in equilibrium with sampled rock compositions. Instead, garnet shows apparent equilibrium with a modeled mixture of the GRZ and the H and grew in equilibrium with an effective bulk composition that shifted toward the leucosome. This would produce the observed increase in garnet grossular content. We conclude that: Malaspina rocks from Crooked Arm preserve evidence for 2 igneous layers which evolved as discrete magmas, igneous crystallization lasted 2 to 3 m.y., granulite metamorphism peaked ~ 3 m.y. after intrusion, metamorphism lasted ≥3 m.y., cooling occurred at ~20°C/m.y., and granulite minerals equilibrated with a mixture of solid phases and melt at ~14 kbar and 920°C (based on garnet compositions and MAD).more » « less
-
null (Ed.)Abstract Recovering the time-evolving relationship between arc magmatism and deformation, and the influence of anisotropies (inherited foliations, crustal-scale features, and thermal gradients), is critical for interpreting the location, timing, and geometry of transpressional structures in continental arcs. We investigated these themes of magma-deformation interactions and preexisting anisotropies within a middle- and lower-crustal section of Cretaceous arc crust coinciding with a Paleozoic boundary in central Fiordland, New Zealand. We present new structural mapping and results of Zr-in-titanite thermometry and U-Pb zircon and titanite geochronology from an Early Cretaceous batholith and its host rock. The data reveal how the expression of transpression in the middle and lower crust of a continental magmatic arc evolved during emplacement and crystallization of the ∼2300 km2 lower-crustal Western Fiordland Orthogneiss (WFO) batholith. Two structures within Fiordland’s architecture of transpressional shear zones are identified. The gently dipping Misty shear zone records syn-magmatic oblique-sinistral thrust motion between ca. 123 and ca. 118 Ma, along the lower-crustal WFO Misty Pluton margin. The subhorizontal South Adams Burn thrust records mid-crustal arc-normal shortening between ca. 114 and ca. 111 Ma. Both structures are localized within and reactivate a recently described >10 km-wide Paleozoic crustal boundary, and show that deformation migrated upwards between ca. 118 and ca. 114 Ma. WFO emplacement and crystallization (mainly 118–115 Ma) coincided with elevated (>750 °C) middle- and lower-crustal Zr-in-titanite temperatures and the onset of mid-crustal cooling at 5.9 ± 2.0 °C Ma−1 between ca. 118 and ca. 95 Ma. We suggest that reduced strength contrasts across lower-crustal pluton margins during crystallization caused deformation to migrate upwards into thermally weakened rocks of the mid-crust. The migration was accompanied by partitioning of deformation into domains of arc-normal shortening in Paleozoic metasedimentary rocks and domains that combined shortening and strike-slip deformation in crustal-scale subvertical, transpressional shear zones previously documented in Fiordland. U-Pb titanite dates indicate Carboniferous–Cretaceous (re)crystallization, consistent with reactivation of the inherited boundary. Our results show that spatio-temporal patterns of transpression are influenced by magma emplacement and crystallization and by the thermal structure of a reactivated boundary.more » « less
-
Garnet ages for eclogite and granulite from the Western Fiordland Orthogneiss (WFO) provide a precise age for high-grade metamorphism and partial melting of the lower crust in a Cretaceous magmatic arc currently exposed in Fiordland, New Zealand. U/Pb zircon ages and pluton areas indicate that a high magmatic flux event between 118 and 115 Ma added >3,000 km2 of mid- to lower-crustal plutons. The high flux event was followed by high temperature metamorphism and partial melting which resulted in pervasive leucosomes, and trondhjemite layers and veins. At least 1,800 km2 of the newly added crust was metamorphosed to garnet granulite facies orthogneiss. Thermobarometry and phase diagram models indicate that garnet grew at 850 to 1,000°C and 12 to 14 kbar in this monzodiorite and diorite gneiss of the Misty, Malaspina, and Breaksea plutons. Sm-Nd garnet-rock isochrons for these three plutons of the WFO (>700 km2of lower crust) indicate that peak temperatures were reached at 111.7±1.0 Ma (N=16). The isotopic and chemical composition of zircon indicate that the Cretaceous arc flare-up was most likely triggered by partial melting and hybridization of subducted oceanic crust and enriched subcontinental lithospheric mantle directly prior to cessation of arc magmatism. The driving mechanism for the terminal magmatic surge is inferred to be propagation of a discontinuous slab tear beneath the arc, or a ridge-trench collision event between 136 and 128 Ma. The lack of ca. 112 Ma plutons in the western part of Fiordland negates a magmatic heat source for garnet granulite metamorphism. Therefore, we infer that high heat flow associated with mantle advection at the base of the arc after the magmatic surge continued for several m.y., heating the lower crust to granulite facies temperaturesmore » « less
-
Abstract Metasediments are common constituents of exhumed lower‐to‐mid‐crustal granulite terranes; understanding their emplacement is significant for the assembly and tectonic evolution of deep continental crust. Here, we report a monazite U‐Th‐Pb petrochronological investigation of the Variscan Ivrea‐Verbano Zone (IVZ) (Val Strona di Omegna section)—an archetypal section of lower crust. Monazite Th‐Pb dates from 11 metapelitic samples decrease with structural depth from 310 to 285 Ma for amphibolite‐facies samples to <290 Ma for granulite‐facies samples. These dates exhibit a time‐resolved variation in monazite trace‐element composition, dominated by the effects of plagioclase and garnet partitioning. Monazite growth under prograde to peak metamorphic conditions began as early as 316 ± 2 Ma. Amphibolite‐facies monazite defines a trend consistent with progressively decreasing garnet modal abundances during decompression and cooling starting at ∼310 Ma; the timing of the onset of exhumation decreases to ∼290 Ma at the base of the amphibolite‐facies portion of the section. Structurally lower, granulite‐facies monazite equilibrated under garnet‐present pressure‐temperature conditions at <290 Ma, with monazite (re)crystallization persisting until at least ∼260 Ma. Combined with existing detrital zircon U‐Pb dates, the monazite data define a <30 Myr duration between deposition of clastic sediments and their burial and heating, potentially to peak amphibolite‐to‐granulite‐facies conditions. Similarly brief timescales for deposition, burial and prograde metamorphism of lower crustal sediments have been reported from continental magmatic arc terranes—supporting the interpretation that the IVZ represents sediments accreted to the base of a Variscan arc magmatic system >5 Myr prior to the onset of regional extension and mafic magmatism.
-
Abstract Ophiolite metamorphic soles preserve important records of ophiolite emplacement, but there have been few detailed investigations into their non‐mafic portions. We present new thermobarometric and petrochronologic data from a metasediment and mafic restite in the upper Wadi Tayin sole exposure in the Samail (Oman‐UAE) Ophiolite. Thermodynamic modeling suggests metasedimentary garnet nucleation at ~4 kb, ~550°C and final growth at 7.5 ± 1.2 kbar, 665 ± 32°C, occurring by 93.0 ± 0.5 Ma (Lu‐Hf isochron). Zircon U‐Pb dates of 106.9 ± 2.3 (detrital) and 98.7 ± 1.7 to 94.1 ± 1.6 Ma (metamorphic) bracket the initiation of metamorphism, and monazite U‐Pb dates from ~97–89 Ma suggest a lengthy period of growth or recrystallization. A mafic titanite U‐Pb age of 92.2 ± 1.8 Ma records the earliest possible juxtaposition of high‐ and lower‐grade sole rocks. These and other data suggest that (i) the Wadi Tayin sole preserves an inverted metamorphic, metasomatic, and age gradient,(ii) metasediment metamorphism occurred during, or soon after, crystallization of the overlying ophiolite (≤96.5 Ma); and (iii) sole metasediments define a thermal gradient continuous with hotter, higher‐
P amphibolites. Some of these data conflict with existing models for sole formation, and we propose several hypotheses to explain them. Cooling of the sole below Ar closure by ~92 Ma suggests that strain rapidly partitioned away from the sole, leading to large‐scale, thin‐skinned thrust emplacement of the ophiolite >100 km across the continental margin and the late, cool underthrusting of the continental margin.