skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The IGRINS YSO Survey II: Veiling Spectra of Pre-main-sequence Stars in Taurus-Auriga
Abstract We present measurements of the H- and K -band veiling for 141 young stellar objects (YSOs) in the Taurus-Auriga star-forming region using high-resolution spectra from the Immersion Grating Near-Infrared Spectrometer. In addition to providing measurements of r H and r K , we produce low-resolution spectra of the excess emission across the H and K bands. We fit temperatures to the excess spectra of 46 members of our sample and measure near-infrared excess temperatures ranging from 1200–2200 K, with an average of 1575 ± 225 K. We compare the luminosity of the excess continuum emission in Class II and Class III YSOs and find that a number of Class III sources display a significant amount of excess flux in the near-infrared. We conclude that the mid-infrared SED slope, and therefore young stellar object classification, is a poor predictor of the amount of near-infrared veiling. If the veiling arises in thermal emission from dust, its presence implies a significant amount of remaining inner-disk (<1 au) material in these Class III sources. We also discuss the possibility that the veiling effects could result from massive photospheric spots, unresolved binary companions, or accretion emission. Six low-mass members of our sample contain a prominent feature in their H -band excess spectra that is consistent with veiling from cool photospheric spots.  more » « less
Award ID(s):
1908892
PAR ID:
10351556
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
922
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
27
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We used the Immersion GRating Infrared Spectrometer (IGRINS) to determine fundamental parameters for 61 K- and M-type young stellar objects (YSOs) located in the Ophiuchus and Upper Scorpius star-forming regions. We employed synthetic spectra and a Markov chain Monte Carlo approach to fit specificK-band spectral regions and determine the photospheric temperature (T), surface gravity ( log g ), magnetic field strength (B), projected rotational velocity ( v sin i ), andK-band veiling (rK). We determinedBfor ∼46% of our sample. Stellar parameters were compared to the results from Taurus-Auriga and the TW Hydrae association presented in Paper I of this series. We classified all the YSOs in the IGRINS survey with infrared spectral indices from Two Micron All Sky Survey and Wide-field Infrared Survey Explorer photometry between 2 and 24μm. We found that Class II YSOs typically have lower log g and v sin i , similarB, and higherK-band veiling than their Class III counterparts. Additionally, we determined the stellar parameters for a sample of K and M field stars also observed with IGRINS. We have identified intrinsic similarities and differences at different evolutionary stages with our homogeneous determination of stellar parameters in the IGRINS YSO survey. Considering log g as a proxy for age, we found that the Ophiuchus and Taurus samples have a similar age. We also find that Upper Scorpius and TWA YSOs have similar ages, and are more evolved than Ophiuchus/Taurus YSOs. 
    more » « less
  2. null (Ed.)
    Context. FU Orionis is the archetypal FUor star, a subclass of young stellar objects (YSOs) that undergo rapid brightening events, often gaining between four and six magnitudes on timescales of days. This brightening is often associated with a massive increase in accretion, which is one of the most ubiquitous processes in astrophysics for bodies ranging from planets and stars to super-massive black holes. We present multi-band interferometric observations of the FU Ori circumstellar environment, including the first J -band interferometric observations of a YSO. Aims. We investigate the morphology and temperature gradient of the innermost regions of the accretion disk around FU Orionis. We aim to characterise the heating mechanisms of the disk and comment on potential outburst-triggering processes. Methods. Recent upgrades to the MIRC-X instrument at the CHARA array have allowed for the first dual-band J and H observations of YSOs. Using baselines up to 331 m, we present high-angular-resolution data of a YSO covering the near-infrared bands J , H , and K . The unprecedented spectral range of the data allowed us to apply temperature gradient models to the innermost regions of FU Ori. Results. We spatially resolved the innermost astronomical unit of the disk and determine the exponent of the temperature gradient of the inner disk to T ∝ r −0.74 ± 0.02 . This agrees with theoretical works that predict T ∝ r −0.75 for actively accreting, steady-state disks, which is a value only obtainable through viscous heating within the disk. We found a disk that extends down to the stellar surface at 0.015 ± 0.007 au, where the temperature is found to be 5800 ± 700 K. We found a disk inclined at 32 ± 4° with a minor-axis position angle of 34 ± 11°. Conclusions. We demonstrate that J -band interferometric observations of YSOs are feasible with the MIRC-X instrument at CHARA. The temperature gradient power-law derived for the inner disk is consistent with theoretical predictions for steady-state, optically thick, viciously heated accretion disks. 
    more » « less
  3. Abstract Determining accurate effective temperatures of stars buried in the dust-obscured Galactic regions is extremely difficult from photometry. Fortunately, high-resolution infrared spectroscopy is a powerful tool for determining the temperatures of stars with no dependence on interstellar extinction. It has long been known that the depth ratios of temperature-sensitive and relatively insensitive spectral lines are excellent temperature indices. In this work, we provide the first extensive line depth ratio (LDR) method application in the infrared region that encompasses both the H and K bands (1.48 μ m − 2.48 μ m). We applied the LDR method to high-resolution ( R ≃ 45,000) H- and K -band spectra of 110 stars obtained with the Immersion Grating Infrared Spectrograph. Our sample contained stars with 3200 < T eff (K) < 5500, 0.20 ≤ log g < 4.6, and −1.5 < [M/H] < 0.5. The application of this method in the K band yielded 21 new LDR– T eff relations. We also report five new LDR– T eff relations found in the H -band region, augmenting the relations already published by other groups. The temperatures found from our calibrations provide reliable temperatures within ∼70 K accuracy compared to spectral  T eff values from the literature. 
    more » « less
  4. Abstract As part of the Young Exoplanets Spectroscopic Survey, this study explores the spot variability of 13 T Tauri Stars (TTSs) in the near-infraredHband, using spectra from the Immersion GRating INfrared Spectrometer. By analyzing effective temperature (Teff) sensitive lines of atomic Feiat ∼1.56259μm and ∼1.56362μm, and molecular OH at ∼1.56310 and ∼1.56317μm, we develop an empirical equivalent width ratio (EWR) relationship forTeffin the range of 3400–5000 K. This relationship allows for precise relativeTeffestimates to within tens of Kelvin and demonstrates compatibility with solar metallicity target models. However, discrepancies between observational data and model predictions limit the extension of theTeff–EWR relationship to a broader parameter space. Our study reveals that both classical and weak-line TTSs can exhibitTeffvariations exceeding 150 K over a span of 2 yr. The detection of a quarter-phase delay between the EWR and radial velocity phase curves in TTSs indicates spot-driven signals. A phase delay of 0.06 ± 0.13 for CI Tau, however, suggests additional dynamics, potentially caused by planetary interaction, inferred from a posited 1:1 commensurability between the rotation period and orbital period. Moreover, a positive correlation betweenTeffvariation amplitude and stellar inclination angle supports the existence of high-latitude spots on TTSs, further enriching our understanding of stellar surface activity in young stars. 
    more » « less
  5. Abstract We present James Webb Space Telescope (JWST) imaging of NGC 7469 with the Near-Infrared Camera and the Mid-InfraRed Instrument. NGC 7469 is a nearby, z = 0.01627, luminous infrared galaxy that hosts both a Seyfert Type-1.5 nucleus and a circumnuclear starburst ring with a radius of ∼0.5 kpc. The new near-infrared (NIR) JWST imaging reveals 66 star-forming regions, 37 of which were not detected by Hubble Space Telescope (HST) observations. Twenty-eight of the 37 sources have very red NIR colors that indicate obscurations up to A v ∼ 7 and a contribution of at least 25% from hot dust emission to the 4.4 μ m band. Their NIR colors are also consistent with young (<5 Myr) stellar populations and more than half of them are coincident with the mid-infrared (MIR) emission peaks. These younger, dusty star-forming regions account for ∼6% and ∼17% of the total 1.5 and 4.4 μ m luminosity of the starburst ring, respectively. Thanks to JWST, we find a significant number of young dusty sources that were previously unseen due to dust extinction. The newly identified 28 young sources are a significant increase compared to the number of HST-detected young sources (4–5). This makes the total percentage of the young population rise from ∼15% to 48%. These results illustrate the effectiveness of JWST in identifying and characterizing previously hidden star formation in the densest star-forming environments around active galactic nuclei (AGN). 
    more » « less