skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: CH2: A Hybrid Operational/Analytical Processing Benchmark for NoSQL
Database systems with hybrid data management support, referred to as HTAP or HOAP architectures, are gaining popularity. These first appeared in the relational world, and the CH-benCHmark (CH) was proposed in 2011 to evaluate such relational systems. Today, one finds NoSQL database systems gaining adoption for new applications. In this paper we present CH2, a new benchmark – created with CH as its starting point – aimed at evaluating hybrid data platforms in the document data management world. Like CH, CH2 borrows from and extends both TPC-C and TPC-H. Differences from CH include a document-oriented schema, a data generation scheme that creates a TPC-H-like history, and a “do over” of the CH queries that is more in line with TPC-H. This paper details shortcomings that we uncovered in CH, the design of CH2, and preliminary results from running CH2 against Couchbase Server 7.0 (whose Query and Analytics services provide HOAP support for NoSQL data). The results provide insight into the performance isolation and horizontal scalability properties of Couchbase Server 7.0 as well as demonstrating the efficacy of CH2 for evaluating such platforms.  more » « less
Award ID(s):
1925610 1954644 1954962
PAR ID:
10351638
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Nambiar, R; Poess, M.
Date Published:
Journal Name:
Proc. 13th TPC Technology Conf. on Performance Evaluation & Benchmarking (TPC TC)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Text analytical tasks like word embedding, phrase mining and topic modeling, are placing increasing demands as well as challenges to existing database management systems. In this paper, we provide a novel algebraic approach based on associative arrays. Our data model and algebra can bring together relational operators and text operators, which enables interesting optimization opportunities for hybrid data sources that have both relational and textual data. We demonstrate its expressive power in text analytics using several real-world tasks. 
    more » « less
  2. SQL is five decades old and has outlasted many programming and query languages that have come and gone during its lifetime. It was born shortly after the introduction of the relational model, and was designed for querying a flat and typed tabular world. Support for modern, flexible data in the SQL standard and in relational database systems has largely been approached via the addition of new column types (e.g. XML or JSON) together with functions to operate on them. It is time for a cleaner solution that retains the benefits that have allowed SQL to be so successful for so long. We describe SQL++, a SQL extension that relaxes SQL's strictness in terms of both object structure (flat → nested) and schema (mandatory → optional), along with a multi-party effort to agree on a core definition and syntax supportable by multiple vendors. SQL++ sees relational data as a subset of a more flexible object model and it sees collections of document data (e.g., JSON) as a natural and supportable relaxation as opposed to a “bolt on” addition via a SQL column type. We describe the core features of SQL++ and explain how its definition can accommodate flexible data, while staying true to SQL in situations where the target data is tabular and strongly typed. Index Terms-semistructured data, query, JSON, SQL, NoSQL 
    more » « less
  3. From the United States’ Health Insurance Portability and Accountability Act (HIPAA) to the European Union’s General Data Protection Regulation (GDPR), there has been an increased focus on individual data privacy protection. Because multiple enforcement agencies (such as legal entities and external governing bodies) have jurisdiction over data governance, it is possible for the same data value to be subject to multiple (and potentially conflicting) policies. As a result, managing and enforcing all applicable legal requirements has become a complex task. In this paper, we present a comprehensive overview of the steps to integrating data retention and purging into a database management system (DBMS). We describe the changes necessary at each step of the data lifecycle management, the minimum functionality that any DBMS (relational or NoSQL) must support, and the guarantees provided by this system. Our proposed solution is 1) completely transparent from the perspective of the DBMS user; 2) requires only a minimal amount of tuning by the database administrator; 3) imposes a negligible performance overhead and a modest storage overhead; and 4) automates the enforcement of both retention and purging policies in the database. 
    more » « less
  4. Selecting indexes capable of reducing the cost of query processing in database systems is a challenging task, especially in large-scale applications. Quantum computing has been investigated with promising results in areas related to database management, such as query optimization, transaction scheduling, and index tuning. Promising results have also been seen when reinforcement learning is applied for database tuning in classical computing. However, there is no existing research with implementation details and experiment results for index tuning that takes advantage of both quantum computing and reinforcement learning. This paper proposes a new algorithm called QRLIT that uses the power of quantum computing and reinforcement learning for database index tuning. Experiments using the database TPC-H benchmark show that QRLIT exhibits superior performance and a faster convergence compared to its classical counterpart. 
    more » « less
  5. Compliance with data retention laws and legislation is an important aspect of data management. As new laws governing personal data management are introduced (e.g., California Consumer Privacy Act enacted in 2020) and a greater emphasis is placed on enforcing data privacy law compliance, data retention support must be an inherent part of data management systems. However, relational databases do not currently offer functionality to enforce retention compliance. In this paper, we propose a framework that integrates data retention support into any relational database. Using SQL-based mechanisms, our system supports an intuitive definition of data retention policies. We demonstrate that our approach meets the legal requirements of retention and can be implemented to transparently guarantee compliance. Our framework streamlines compliance support without requiring database schema changes, while incurring an average 6.7% overhead compared to the current state-of-the-art solution. 
    more » « less