skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1925610

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Window queries are important analytical tools for ordered data and have been researched both in streaming and stored data environments. By incorporating ideas for window queries from existing streaming and stored data systems, we propose a new window syntax that makes a wide range of window queries easier to write and optimize. We have implemented this new window syntax in SQL++, an SQL extension that supports querying semistructured data, on top of AsterixDB, a Big Data Management System, thus allowing us to process window queries over large datasets in a parallel and efficient manner.

     
    more » « less
  2. Abstract

    Today, data is being actively generated by a variety of devices, services, and applications. Such data is important not only for the information that it contains, but also for its relationships to other data and to interested users. Most existing Big Data systems focus onpassivelyanswering queries from users, rather thanactivelycollecting data, processing it, and serving it to users. To satisfy both passive and active requests at scale, application developers need either to heavily customize an existing passive Big Data system or to glue one together with systems likeStreaming EnginesandPub-sub services. Either choice requires significant effort and incurs additional overhead. In this paper, we present the BAD (Big Active Data) system as an end-to-end, out-of-the-box solution for this challenge. It is designed to preserve the merits of passive Big Data systems and introduces new features for actively serving Big Data to users at scale. We show the design and implementation of the BAD system, demonstrate how BAD facilitates providing both passive and active data services, investigate the BAD system’s performance at scale, and illustrate the complexities that would result from instead providing BAD-like services with a “glued” system.

     
    more » « less
  3. Summary

    Traditional relational database systems handle data by dividing their memory into sections such as a buffer cache and working memory, assigning a memory budget to each section to efficiently manage a limited amount of overall memory. They also assign memory budgets to memory‐intensive operators such as sorts and joins and control the allocation of memory to these operators; each memory‐intensive operator attempts to maximize its memory usage to reduce disk I/O cost. Implementing such memory‐intensive operators requires a careful design and application of appropriate algorithms that properly utilize memory. Today's Big Data management systems need the ability to handle large amounts of data similarly, as it is unrealistic to assume that truly big data will fit into memory. In this article, we share our memory management experiences in Apache AsterixDB, an open‐source Big Data management software platform that scales out horizontally on shared‐nothing commodity computing clusters. We describe the implementation of AsterixDB's memory‐intensive operators and their designs related to memory management. We also discuss memory management at the global (cluster) level. We conducted an experimental study using several synthetic and real datasets to explore the impact of this work. We believe that future Big Data management system builders can benefit from these experiences.

     
    more » « less
  4. Nambiar, R ; Poess, M. (Ed.)
    Database systems with hybrid data management support, referred to as HTAP or HOAP architectures, are gaining popularity. These first appeared in the relational world, and the CH-benCHmark (CH) was proposed in 2011 to evaluate such relational systems. Today, one finds NoSQL database systems gaining adoption for new applications. In this paper we present CH2, a new benchmark – created with CH as its starting point – aimed at evaluating hybrid data platforms in the document data management world. Like CH, CH2 borrows from and extends both TPC-C and TPC-H. Differences from CH include a document-oriented schema, a data generation scheme that creates a TPC-H-like history, and a “do over” of the CH queries that is more in line with TPC-H. This paper details shortcomings that we uncovered in CH, the design of CH2, and preliminary results from running CH2 against Couchbase Server 7.0 (whose Query and Analytics services provide HOAP support for NoSQL data). The results provide insight into the performance isolation and horizontal scalability properties of Couchbase Server 7.0 as well as demonstrating the efficacy of CH2 for evaluating such platforms. 
    more » « less