skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Integrated Simulation Platform for the Analysis of UAS BVLOS Operations Supported by 4G/5G Communications
Command and control (C2) data links over cellular networks is envisioned to be a reliable communications modality for various types of missions for Unmanned Aircraft System (UAS). The planning of UAS traffic and the provision of cellular communication resources are cross-coupled decisions that should be analyzed together to understand the quality of service such a modality can provide that meets business needs. The key to effective planning is the accurate estimation of communication link quality and the resource usage for a given air traffic requirement. In this work, a simulation and modelling framework is developed that integrates two open-source simulation platforms, Repast Simphony and ns-3, to generate UAS missions over different geographical areas and simulates the provision of 4G/5G cellular network connectivity to support their C2 and mission data links. To the best of our knowledge, this is the first simulator that co-simulates air traffic and cellular network communications for UAS while leveraging standardized 3GPP propagation models and incorporating detailed management of communication channels (i.e., resource blocks) at the cellular base station level. Three experiments were executed to demonstrate how the integrated simulation platform can be used to provide guidelines in communication resource allocation, air traffic management, and mission safety management in beyond visual line of sight (BVLOS) operations.  more » « less
Award ID(s):
1822165
PAR ID:
10351719
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
2022 Integrated Communication, Navigation and Surveillance Conference (ICNS)
Page Range / eLocation ID:
1 to 12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A reliable command and control (C2) data link is required for unmanned aircraft systems (UAS) operations in order to monitor the status and support the control of UAS. A practical realization of the C2 communication and mission data links for commercial UAS operations is via LTE/5G networks. While the trajectory of each UAS directly determines the flight distance and mission cost in terms of energy dissipation, it also has a strong correlation to the quality of the communication link provided by a serving base station, where quality is defined as the achieved signal-to-interference-plus-noise ratio (SINR) required to maintain the control link of the UAS. Due to signal interference and the use of RF spectrum resources, the trajectory of a UAS not only determines the communication link quality it will encounter, but also influences the link quality of other UAS in its vicinity. Therefore, effective UAS traffic management must plan the trajectory for a group of UAS taking into account the impact to the interference levels of other base stations and UAS communication links. In this paper, an SINR Aware Predictive Planning (SAPP) framework is presented for trajectory planning of UAS leveraging 4G/5G communication networks in a simulated environment. The goal is to minimize flight distance while ensuring a minimum required link quality for C2 communications between UAS and base stations. The predictive control approach is proposed to address the challenges of the time varying SINR caused by the interference from other UAS’s communication. Experimental results show that the SAPP framework provides more than 3dB improvements on average for UAS communication parameters compared to traditional trajectory planning algorithms while still achieving shortest path trajectories and collision avoidance. 
    more » « less
  2. Advanced air mobility (AAM) has introduced a new mode of air transportation that can be integrated, providing services including air taxis, which can quickly transport people and cargo from one place to another. However, urban airspace is already congested with commercial air traffic, so there is a need for an efficient and autonomous airspace management system. Establishing structured air corridors and enabling UAS-to-UAS (U2U) communications are essential to achieve autonomy. Air corridors are designated airspace primarily reserved for AAM traffic, which will streamline the movement of unmanned aircraft systems (UAS). Meanwhile, U2U communications facilitate efficient collision avoidance strategies (CAS). A key aspect of this system is the development of CAS, which requires advanced communication protocols to monitor traffic patterns and detect potential collisions. This paper explores designing and implementing CAS using U2U communications. Use cases for U2U communications include merging, minimum separation, information relay, collaborative sensing, and rerouting. All these use cases demand real-time solutions for managing traffic conflicts involving multiple UAS. The CAS discussed in this paper utilizes U2U communications to mitigate the risk of collisions in the airspace and demonstrates how U2U communications can assist in efficient AAM traffic management through simulations. 
    more » « less
  3. Recent advances in multi-rotor vehicle control and miniaturization of hardware, sensing, and battery technologies have enabled cheap, practical design of micro air vehicles for civilian and hobby applications. In parallel, several applications are being envisioned that bring together a swarm of multiple networked micro air vehicles to accomplish large tasks in coordination. However, it is still very challenging to deploy multiple micro air vehicles concurrently. To address this challenge, we have developed an open software/hardware platform called the University at Buffalo’s Airborne Networking and Communications Testbed (UB-ANC), and an associated emulation framework called the UB-ANC Emulator. In this paper, we present the UB-ANC Emulator, which combines multi-micro air vehicle planning and control with high-fidelity network simulation, enables practitioners to design micro air vehicle swarm applications in software and provides seamless transition to deployment on actual hardware. We demonstrate the UB-ANC Emulator’s accuracy against experimental data collected in two mission scenarios: a simple mission with three networked micro air vehicles and a sophisticated coverage path planning mission with a single micro air vehicle. To accurately reflect the performance of a micro air vehicle swarm where communication links are subject to interference and packet losses, and protocols at the data link, network, and transport layers affect network throughput, latency, and reliability, we integrate the open-source discrete-event network simulator ns-3 into the UB-ANC Emulator. We demonstrate through node-to-node and end-to-end measurements how the UB-ANC Emulator can be used to simulate multiple networked micro air vehicles with accurate modeling of mobility, control, wireless channel characteristics, and network protocols defined in ns-3. 
    more » « less
  4. null (Ed.)
    With increasing urban population, there is global interest in Urban Air Mobility (UAM), where hundreds of autonomous Unmanned Aircraft Systems (UAS) execute missions in the airspace above cities. Unlike traditional human-inthe-loop air traffic management, UAM requires decentralized autonomous approaches that scale for an order of magnitude higher aircraft densities and are applicable to urban settings. We present Learning-to-Fly (L2F), a decentralized on-demand airborne collision avoidance framework for multiple UAS that allows them to independently plan and safely execute missions with spatial, temporal and reactive objectives expressed using Signal Temporal Logic. We formulate the problem of predictively avoiding collisions between two UAS without violating mission objectives as a Mixed Integer Linear Program (MILP). This however is intractable to solve online. Instead, we develop L2F, a two-stage collision avoidance method that consists of: 1) a learning-based decision-making scheme and 2) a distributed, linear programming-based UAS control algorithm. Through extensive simulations, we show the real-time applicability of our method which is ≈6000× faster than the MILP approach and can resolve 100% of collisions when there is ample room to maneuver, and shows graceful degradation in performance otherwise. We also compare L2F to two other methods and demonstrate an implementation on quad-rotor robots. 
    more » « less
  5. Under NASA’s Artemis program, NASA is planning to send astronauts back to the Moon in the next couple of years. Near term missions will be analogous but much more sophisticated versions of the last couple of Apollo missions. However, unlike Apollo, this time NASA intends to put the infrastructure in place to support long term human presence and eventual industrialization of the Moon. To make this vision a reality, NASA plans to collaborate with commercial and international partners as much as possible as opposed to developing, building, and operating equipment on its own. Lunar infrastructure will eventually be built over time by many organizations, public and private, to support sustained human exploration, science, and industrial activities. Obviously, this vision for the future will be impossible without a robust lunar communications and navigation system that can support many users with varying degrees of services. On Earth, most people are very familiar with the 3rd Generation Partnership Project (3GPP) 5G mobile telecommunications technology. NASA’s Space Technology Mission Directorate and NASA’s Space Communications and Navigation office would like to see a lunar communications and navigation network with similar capabilities to the cellular communication networks most of us enjoy today. Building such a network will require participation by many organizations. This paper will provide an overview of NASA’s interest in using 5G and beyond on the lunar surface; it will also describe current work based on 3GPP standards within NASA or funded by NASA, such as Nokia’s upcoming Tipping Point demonstration of 4G / LTE on the lunar surface. 
    more » « less