skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Predictive Control Framework for UAS Trajectory Planning Considering 4G/5G Communication Link Quality
A reliable command and control (C2) data link is required for unmanned aircraft systems (UAS) operations in order to monitor the status and support the control of UAS. A practical realization of the C2 communication and mission data links for commercial UAS operations is via LTE/5G networks. While the trajectory of each UAS directly determines the flight distance and mission cost in terms of energy dissipation, it also has a strong correlation to the quality of the communication link provided by a serving base station, where quality is defined as the achieved signal-to-interference-plus-noise ratio (SINR) required to maintain the control link of the UAS. Due to signal interference and the use of RF spectrum resources, the trajectory of a UAS not only determines the communication link quality it will encounter, but also influences the link quality of other UAS in its vicinity. Therefore, effective UAS traffic management must plan the trajectory for a group of UAS taking into account the impact to the interference levels of other base stations and UAS communication links. In this paper, an SINR Aware Predictive Planning (SAPP) framework is presented for trajectory planning of UAS leveraging 4G/5G communication networks in a simulated environment. The goal is to minimize flight distance while ensuring a minimum required link quality for C2 communications between UAS and base stations. The predictive control approach is proposed to address the challenges of the time varying SINR caused by the interference from other UAS’s communication. Experimental results show that the SAPP framework provides more than 3dB improvements on average for UAS communication parameters compared to traditional trajectory planning algorithms while still achieving shortest path trajectories and collision avoidance.  more » « less
Award ID(s):
1822165 2221875
PAR ID:
10451174
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Integrated Communication, Navigation and Surveillance Conference (ICNS)
Page Range / eLocation ID:
1 to 10
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Command and control (C2) data links over cellular networks is envisioned to be a reliable communications modality for various types of missions for Unmanned Aircraft System (UAS). The planning of UAS traffic and the provision of cellular communication resources are cross-coupled decisions that should be analyzed together to understand the quality of service such a modality can provide that meets business needs. The key to effective planning is the accurate estimation of communication link quality and the resource usage for a given air traffic requirement. In this work, a simulation and modelling framework is developed that integrates two open-source simulation platforms, Repast Simphony and ns-3, to generate UAS missions over different geographical areas and simulates the provision of 4G/5G cellular network connectivity to support their C2 and mission data links. To the best of our knowledge, this is the first simulator that co-simulates air traffic and cellular network communications for UAS while leveraging standardized 3GPP propagation models and incorporating detailed management of communication channels (i.e., resource blocks) at the cellular base station level. Three experiments were executed to demonstrate how the integrated simulation platform can be used to provide guidelines in communication resource allocation, air traffic management, and mission safety management in beyond visual line of sight (BVLOS) operations. 
    more » « less
  2. The need for continuous coverage, as well as low-latency, and ultrareliable communication in 5G and beyond cellular networks encouraged the deployment of high-altitude platforms and low-altitude drones as flying base stations (FBSs) to provide last-mile communication where high cost or geographical restrictions hinder the installation of terrestrial base stations (BSs) or during the disasters where the BSs are damaged. The performance of unmanned aerial vehicle (UAV)-assisted cellular systems in terms of coverage and quality of service offered for terrestrial users depends on the number of deployed FBSs, their 3-D location as well as trajectory. While several recent works have studied the 3-D positioning in UAV-assisted 5G networks, the problem of jointly addressing coverage and user data rate has not been addressed yet. In this article, we propose a solution for joint 3-D positioning and trajectory planning of FBSs with the objectives of the total distance between users and FBSs and minimizing the sum of FBSs flight distance by developing a fuzzy candidate points selection method. 
    more » « less
  3. We introduce the concept of using unmanned aerial vehicles (UAVs) as drone base stations for in-band Integrated Access and Backhaul (IB-IAB) scenarios for 5G networks. We first present a system model for forward link transmissions in an IB-IAB multi-tier drone cellular network. We then investigate the key challenges of this scenario and propose a framework that utilizes the flying capabilities of the UAVs as the main degree of freedom to find the optimal precoder design for the backhaul links, user-base station association, UAV 3D hovering locations, and power allocations. We discuss how the proposed algorithm can be utilized to optimize the network performance in both large and small scales. Finally, we use an exhaustive search-based solution to demonstrate the performance gains that can be achieved from the presented algorithm in terms of the received signal to interference plus noise ratio (SINR) and overall network sum-rate. 
    more » « less
  4. null (Ed.)
    This paper assesses the feasibility of a novel dynamic spectrum sharing approach for a cellular downlink based on cognitive overlay to allow non-orthogonal cellular transmissions from a primary and a secondary radio access technology concurrently on the same radio resources. The 2-user Gaussian cognitive interference channel is used to model a downlink scenario in which the primary and secondary base stations are co-located. A system architecture is defined that addresses practical challenges associated with cognitive overlay, in particular the noncausal knowledge of the primary user message at the cognitive transmitter. A cognitive overlay scheme is applied that combines superposition coding with dirty paper coding, and a primary user protection criterion is derived that is specific to a scenario in which the primary system is 4G while the secondary system is 5G. Simulation is used to evaluate the achievable signal-to-interference-plus-noise ratio (SINR) at the 4G and 5G receivers, as well as the cognitive power allocation parameter as a function of distance. Results suggest that the cognitive overlay scheme is feasible when the distance to the 5G receiver is relatively small, even when a large majority of the secondary user transmit power is allocated to protecting the primary user transmission. Achievable link distances for the 5G receiver are on the order of hundreds of meters for an urban macrocell or a few kilometers for a rural macrocell. 
    more » « less
  5. Cellular networks with D2D links are increasingly being explored for mission-critical applications (e.g., real-time control and AR/VR) which require predictable communication reliability. Thus it is critical to control interference among concurrent transmissions in a predictable manner to ensure the required communication reliability. To this end, we propose a Unified Cellular Scheduling (UCS) framework that, based on the Physical-Ratio-K (PRK) interference model, schedules uplink, downlink, and D2D transmissions in a unified manner to ensure predictable communication reliability while maximizing channel spatial reuse. UCS also provides a simple, effective approach to mode selection that maximizes the communication capacity for each involved communication pair. UCS effectively uses multiple channels for high throughput as well as resilience to channel fading and external interference. Leveraging the availability of base stations (BSes) as well as high-speed, out-of-band connectivity between BSes, UCS effectively orchestrates the functionalities of BSes and user equipment (UE) for light-weight control signaling and ease of incremental deployment and integration with existing cellular standards. We have implemented UCS using the open-source, standards-compliant cellular networking platform OpenAirInterface, and we have validated the UCS design and implementation using the USRP B210 software-defined radios in the ORBIT wireless testbed. We have also evaluated UCS through high-fidelity, at-scale simulation studies; we observe that UCS ensures predictable communication reliability while achieving a higher channel spatial reuse rate than existing mechanisms, and that the distributed UCS framework enables a channel spatial reuse rate statistically equal to that in the state-of-the-art centralized scheduling algorithm iOrder. 
    more » « less