Active control of interference is necessary with increased cell density, more complicated environmental reflections, and coexistence of multiple networks for next-generation wireless communications. The existing radio receiver architectures for spatial interference cancellation (SpICa) are limited by the spatial nulls created by a phased-antenna array (PAA) and cannot cover wide modulated bandwidths (BWs). We propose a discrete-time-delay-compensating technique for canceling spatial interferences with wide modulated BWs to reduce the dynamic range requirement for the data converter. Integral to the proposed circuit is a switched-capacitor-based multiply-and-accumulate processor that incorporates a reconfigurable phase interpolator and time interleaver for precise digitally tunable delays and multiplication of the input signal to an orthogonal matrix. The digital time interleaver enables 5-ps resolution with a reconfigurable range up to 15 ns. The measured results demonstrate greater than 35-dB SpICa over 80-MHz modulated BWs in the 65-nm CMOS with 52 mW of power consumption.
more »
« less
A 345μW 1GHz Process and Temperature Invariant Constant Slope-and-Swing Ramp-based 7-bit Phase Interpolator for True-Time-Delay Spatial Signal Processors
In the baseband time delay (TD) elements used
for delay compensation in discrete-time beamformers, phase
interpolator (PI) plays a crucial role as the resolution of the PI
defines the delay resolution of the TD. In this paper, we present
a process and temperature invariant high-resolution and highly
linear low-power PI. The proposed PI uses current integration
which generates an adaptable constant slope-and-swing ramp
signal to achieve low power. By switched-capacitor bias
generation, the PI linearity is enhanced with 0.2 LSB DNL and
0.3 LSB INL, respectively. The 7-bit PI is realized in 65nm CMOS
technology can generate the full range delay with a resolution
of 8psec with the input of 1GHz. The PI consumes a power of
345μW and occupies an active area of 0.021mm2.
Keywords—Ramp-rate tracking, constant slope-and-swing,
phase interpolator, ramp-based, baseband time delay
more »
« less
- Award ID(s):
- 2030159
- NSF-PAR ID:
- 10351767
- Date Published:
- Journal Name:
- IEEE Radio Frequency Integrated Circuits Symposium
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The self-interference (SI) channels in full-duplex (FD) radios have large nano-second-scale delay spreads, which poses a significant challenge in designing SI cancelers that can emulate the SI channel over wide bandwidths. Passive implementations of high delay lines have a prohibitively large form factor and loss when implemented on silicon, whereas active implementations suffer from noise and linearity penalties. In this work, we leverage time-interleaved multi-path switched-capacitor (SC) circuits to provide large wideband delays with a small form factor and low power (LP) consumption to implement RF and baseband (BB) cancelers in an FD receiver (RX). We utilize capacitor stacking to obtain passive voltage gain to compensate for the loss of these delay elements, thus permitting an increased number of interleaved paths and, hence, a higher delay. Furthermore, to reduce the RX noise figure (NF) penalty due to injecting the cancellation signal into the receiver, we introduce a novel low-noise trans-impedance amplifier (LNTA) architecture, which injects the cancellation signal into RX and also accomplishes finite impulse response (FIR) filter weighting and summation. The FD receiver is implemented in a standard 65-nm CMOS process and operates from 0.1 to 1 GHz. The RF/BB canceler delay cells have real-/complex-valued weighting with delays rangingmore » « less
-
As technology advances and cities become more innovative, the need to harvest energy to power intelligent devices at remote locations, such as wireless sensors, is increasing. This paper focuses on studying and simulating an energy management system (EMS) for energy harvesting with a battery and a supercapacitor for low power applications. Lithium-ion batteries are the primary energy storage source for low power applications due to their high energy density and efficiency. On the other hand, the supercapacitors excel in fast charge and discharge. Furthermore, supercapacitors tolerate high currents due to their low equivalent series resistance (ESR). The supercapacitor in the system increases the time response of the power delivery to the load, and it also absorbs the high currents in the system. Moreover, the supercapacitor covers short-time load demand due to the fluctuation of the renewable source. The EMS monitors the proposed system to maintain power to the load either from the renewable source or the energy storage. The power flow of the energy storage is controlled via DC-DC bidirectional converters. The lithium-ion battery is charged via a constant current (CC) using a sliding mode controller (SMC) and a constant voltage (CV) via a typical PI controller. The response of the SMC current controller is compared with PI and Fuzzy current controller. Furthermore, the performance of a system having and not having a supercapacitor is compared. Finally, MATLAB modeling system simulation and experimental implementation results are analyzed and presented.more » « less
-
An increasing number of Trusted Execution Environment (TEE) is adopting to a variety of commercial products for protecting data security on the cloud. However, TEEs are still exposed to various side-channel vulnerabilities, such as execution order-based, timing-based, and power-based vulnerabilities. While recent hardware is applying various techniques to mitigate order-based and timing-based side-channel vulnerabilities, power-based side-channel attacks remain a concern of hardware security, especially for the confidential computing settings where the server machines are beyond the control of cloud users. In this paper, we present PWRLEAK, an attack framework that exploits AMD’s power reporting interfaces to build power side-channel attacks against AMD Secure Encrypted Virtualization (SEV)-protected VM. We design and implement the attack framework with three general steps: (1) identify the instruction running inside AMD SEV, (2) apply a power interpolator to amplify power consumption, including an emulation-based interpolator for analyzing purposes and a moregeneral interrupt-based interpolator, and (3) infer secrets with various analysis approaches. A case study of using the emulation-based interpolator to infer the whole JPEG images processed by libjpeg demonstrates its ability to help analyze power consumption inside SEV VM. Our end-to-end attacks against Intel’s Integrated Performance Primitives (Intel IPP) library indicates that PWRLEAK can be exploited to infer RSA private keys with over 80% accuracy using the interrupt based interpolator.more » « less
-
Abstract—Emerging applications such as wireless sensing, position location, robotics, and many more are driven by the ultra-wide bandwidths available at millimeter-wave (mmWave) and Terahertz (THz) frequencies. The characterization and effi- cient utilization of wireless channels at these extremely high frequencies require detailed knowledge of the radio propaga- tion characteristics of the channels. Such knowledge is developed through empirical observations of operating conditions using wireless transceivers that measure the impulse response through channel sounding. Today, cutting-edge channel sounders rely on several bulky RF hardware components with complicated interconnections, large parasitics, and sub-GHz RF bandwidth. This brief presents a compact sliding correlation-based chan- nel sounder baseband built on a monolithic integrated circuit (IC) using 65 nm CMOS, implemented as an evaluation board achieving a 2 GHz RF bandwidth. The IC is the world’s first gigabit-per-second channel sounder baseband implemented in low-cost CMOS. The presented single-board system can be employed at both the transmit and receive baseband to study multipath characteristics and path loss. Thus, the single-board implementation provides an inexpensive and compact solution for sliding correlation-based channel sounding with 1 ns multipath delay resolution. Index Terms—142 GHz, channel sounder, mmWave, on-chip baseband, PN sequence, RF hardware, sliding correlation, THz, XPDmore » « less