skip to main content


Title: Detailed dual-Doppler structure of Kelvin-Helmholtz waves from an airborne profiling radar over complex terrain. Part II: Evidence for precipitation enhancement from observations and modeling
Abstract Kelvin-Helmholtz (KH) waves are a frequent source of turbulence in stratiform precipitation systems over mountainous terrain. KH waves introduce large eddies into otherwise laminar flow, with updrafts and downdrafts generating small-scale turbulence. When they occur in-cloud, such dynamics influence microphysical processes that impact precipitation growth and fallout. Part I of this paper used dual-Doppler, 2D wind and reflectivity measurements from an airborne cloud radar to demonstrate the occurrence of KH waves in stratiform orographic precipitation systems and identified four mechanisms for triggering KH waves. In Part II, we use similar observations to explore the effects of KH wave updrafts and turbulence on cloud microphysics. Measurements within KH wave updrafts reveal the production of liquid water in otherwise ice-dominated clouds, which can contribute to snow generation or enhancement via depositional and accretional growth. Fallstreaks beneath KH waves contain higher ice water content, composed of larger and more numerous ice particles, suggesting that KH waves and associated turbulence may also increase ice nucleation. A Large-Eddy Simulation (LES), designed to model the microphysical response to the KH wave eddies in mixed phase cloud, shows that depositional and accretional growth can be enhanced in KH waves, resulting in more precipitation when compared to a baseline simulation. While sublimation and evaporation occur in KH downdrafts, persistent supersaturation with respect to ice allows for net increase in ice mass. These modeling results and observations suggest that KH waves embedded in mixed-phase stratiform clouds may increase precipitation, although the quantitative impact remains uncertain.  more » « less
Award ID(s):
2016077 2016106
NSF-PAR ID:
10351786
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
ISSN:
0022-4928
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Airborne vertically profiling Doppler radar data and output from a ∼1-km-grid-resolution numerical simulation are used to examine how relatively small-scale terrain ridges (∼10–25 km apart and ∼0.5–1.0 km above the surrounding valleys) impact cross-mountain flow, cloud processes, and surface precipitation in deep stratiform precipitation systems. The radar data were collected along fixed flight tracks aligned with the wind, about 100 km long between the Snake River Plain and the Idaho Central Mountains, as part of the 2017 Seeded and Natural Orographic Wintertime clouds: the Idaho Experiment (SNOWIE). Data from repeat flight legs are composited in order to suppress transient features and retain the effect of the underlying terrain. Simulations closely match observed series of terrain-driven deep gravity waves, although the simulated wave amplitude is slightly exaggerated. The deep waves produce pockets of supercooled liquid water in the otherwise ice-dominated clouds (confirmed by flight-level observations and the model) and distort radar-derived hydrometeor trajectories. Snow particles aloft encounter several wave updrafts and downdrafts before reaching the ground. No significant wavelike modulation of radar reflectivity or model ice water content occurs. The model does indicate substantial localized precipitation enhancement (1.8–3.0 times higher than the mean) peaking just downwind of individual ridges, especially those ridges with the most intense wave updrafts, on account of shallow pockets of high liquid water content on the upwind side, leading to the growth of snow and graupel, falling out mostly downwind of the crest. Radar reflectivity values near the surface are complicated by snowmelt, but suggest a more modest enhancement downwind of individual ridges. Significance Statement Mountains in the midlatitude belt and elsewhere receive more precipitation than the surrounding lowlands. The mountain terrain often is complex, and it remains unclear exactly where this precipitation enhancement occurs, because weather radars are challenged by beam blockage and the gauge network is too sparse to capture the precipitation heterogeneity over complex terrain. This study uses airborne profiling radar and high-resolution numerical simulations for four winter storms over a series of ridges in Idaho. One key finding is that while instantaneous airborne radar transects of the cross-mountain flow, vertical drafts, and reflectivity contain much transient small-scale information, time-averaged transects look very much like the model transects. The model indicates substantial surface precipitation enhancement over terrain, peaking over and just downwind of individual ridges. Radar observations suggest less enhancement, but the radar-based assessment is uncertain. The second key conclusion is that, even though orographic gravity waves are felt all the way up into the upper troposphere, the orographic precipitation enhancement is due to processes very close to the terrain. 
    more » « less
  2. Abstract

    Kelvin–Helmholtz instability (KH) waves have been broadly shown to affect the growth of hydrometeors within a region of falling precipitation, but formation and growth from KH waves at cloud top needs further attention. Here, we present detailed observations of cloud-top KH waves that produced a snow plume that extended to the surface. Airborne transects of cloud radar aligned with range height indicator scans from ground-based precipitation radar track the progression and intensity of the KH wave kinetics and precipitation. In situ cloud probes and surface disdrometer measurements are used to quantify the impact of the snow plume on the composition of an underlying supercooled liquid water (SLW) cloud and the snowfall observed at the surface. KH wavelengths of 1.5 km consisted of ∼750-m-wide up- and downdrafts. A distinct fluctus region appeared as a wave-breaking cloud top where the fastest updraft was observed to exceed 5 m s−1. Relatively weaker updrafts of 0.5–1.5 m s−1beneath the fluctus and partially overlapping the dendritic growth zone were associated with steep gradients in reflectivity of −5 to 20 dBZein as little as 500-m depths due to rapid growth of pristine planar ice crystals. The falling snow removed ∼80% of the SLW content from the underlying cloud and led to a twofold increase in surface liquid equivalent snowfall rate from 0.6 to 1.3 mm h−1. This paper presents the first known study of cloud-top KH waves producing snowfall with observations of increased snowfall rates at the surface.

     
    more » « less
  3. Abstract On 7 February 2020, precipitation within the comma-head region of an extratropical cyclone was sampled remotely and in situ by two research aircraft, providing a vertical cross section of microphysical observations and fine-scale radar measurements. The sampled region was stratified vertically by distinct temperature layers and horizontally into a stratiform region on the west side, and a region of elevated convection on the east side. In the stratiform region, precipitation formed near cloud top as side-plane, polycrystalline, and platelike particles. These habits occurred through cloud depth, implying that the cloud-top region was the primary source of particles. Almost no supercooled water was present. The ice water content within the stratiform region showed an overall increase with depth between the aircraft flight levels, while the total number concentration slightly decreased, consistent with growth by vapor deposition and aggregation. In the convective region, new particle habits were observed within each temperature-defined layer along with detectable amounts of supercooled water, implying that ice particle formation occurred in several layers. Total number concentration decreased from cloud top to the −8°C level, consistent with particle aggregation. At temperatures > −8°C, ice particle concentrations in some regions increased to >100 L −1 , suggesting secondary ice production occurred at lower altitudes. WSR-88D reflectivity composites during the sampling period showed a weak, loosely organized banded feature. The band, evident on earlier flight legs, was consistent with enhanced vertical motion associated with frontogenesis, and at least partial melting of ice particles near the surface. A conceptual model of precipitation growth processes within the comma head is presented. Significance Statement Snowstorms over the northeast United States have major impacts on travel, power availability, and commerce. The processes by which snow forms in winter storms over this region are complex and their snowfall totals are hard to forecast accurately because of a poor understanding of the microphysical processes within the clouds composing the storms. This paper presents a case study from the NASA IMPACTS field campaign that involved two aircraft sampling the storm simultaneously with radars, and probes that measure the microphysical properties within the storm. The paper examines how variations in stability and frontal structure influence the microphysical evolution of ice particles as they fall from cloud top to the surface within the storm. 
    more » « less
  4. The on-set of ice nucleation in mixed-phase clouds determines cloud lifetime and their microphysical properties. In this work, we develop a novel method that differentiates the early and later transition phases of mixed-phase clouds, i.e., ice crystals are initially surrounded by supercooled liquid water droplets, then as they grow, pure ice segments are formed. Using this method, we examine the relationship between the macrophysical and microphysical properties of mixed-phase clouds. The results show that evolution of cloud macrophysical properties, represented by the increasing spatial ratio of regions containing ice crystals relative to the total in-cloud region (defined as ice spatial ratio), is positively correlated with the evolution of microphysical properties, represented by the increasing ice water content and decreasing liquid water content. The mass partition transition from liquid to ice becomes more significant during the later transition phase (i.e., transition phase 3) when pure ice cloud regions (ICRs) start to appear. Occurrence frequencies of cloud thermodynamic phases show significant transition from liquid to ice at a similar temperature (i.e., -17.5 °C) among three types of definitions of mixed-phase clouds based on ice mass fraction, ice number fraction, or ice spatial ratio. Aerosol indirect effects are quantified for different transition phases using number concentrations of aerosols greater than 100 nm or 500 nm (N>100 and N>500, respectively). N>500 shows stronger positive correlations with ice spatial ratios compared with N>100. This result indicates that larger aerosols potentially contain ice nucleating particles, which facilitate the formation of ice crystals in mixed-phase clouds. The impact of N>500 is also more significant on the earlier transition phase when ice crystals just start to appear compared with the later transition phase. The thermodynamic and dynamic conditions are quantified for each transition phase. The results show in-cloud turbulence as a main mechanism for both the initiation of ice nucleation and the maintenance of supercooled liquid water, while updrafts are important for the latter but not the former. Overall, these results illustrate the varying effects of aerosols, thermodynamics, and dynamics throughout cloud evolution based on this new method that categorizes cloud transition phases. 
    more » « less
  5. Abstract

    Rimed precipitation growth can efficiently remove moisture and aerosols from the boundary layer, yet thin low‐level Arctic mixed‐phase clouds are generally thought to precipitate pristine and aggregated ice crystals. Here we present automated surface photographic measurements showing that only 34% of precipitation particles exhibit negligible riming and that graupel particlesin diameter commonly fall from clouds with liquid water paths less than 50 g m−2. Analyses indicate that significant riming enhancement can occur provided sustained updrafts of 0.4 m s−1, consistent with those measured in Arctic clouds. A Lagrangian numerical simulation that tracks falling particles suggests that similar updraft speeds can account for about one half of the observed riming enhancement. Riming enhancement appears particularly likely when weak temperature inversions are observed at cloud top, but a full explanation remains to be determined.

     
    more » « less