skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: "Reading Between the Heat": Co-Teaching Body Thermal Signatures for Non-intrusive Stress Detection
Stress impacts our physical and mental health as well as our social life. A passive and contactless indoor stress monitoring system can unlock numerous important applications such as workplace productivity assessment, smart homes, and personalized mental health monitoring. While the thermal signatures from a user’s body captured by a thermal camera can provide important information about the “fight-flight” response of the sympathetic and parasympathetic nervous system, relying solely on thermal imaging for training a stress prediction model often lead to overfitting and consequently a suboptimal performance. This paper addresses this challenge by introducing ThermaStrain, a novel co-teaching framework that achieves high-stress prediction performance by transferring knowledge from the wearable modality to the contactless thermal modality. During training, ThermaStrain incorporates a wearable electrodermal activity (EDA) sensor to generate stress-indicative representations from thermal videos, emulating stress-indicative representations from a wearable EDA sensor. During testing, only thermal sensing is used, and stress-indicative patterns from thermal data and emulated EDA representations are extracted to improve stress assessment. The study collected a comprehensive dataset with thermal video and EDA data under various stress conditions and distances. ThermaStrain achieves an F1 score of 0.8293 in binary stress classification, outperforming the thermal-only baseline approach by over 9%. Extensive evaluations highlight ThermaStrain’s effectiveness in recognizing stress-indicative attributes, its adaptability across distances and stress scenarios, real-time executability on edge platforms, its applicability to multi-individual sensing, ability to function on limited visibility and unfamiliar conditions, and the advantages of its co-teaching approach. These evaluations validate ThermaStrain’s fidelity and its potential for enhancing stress assessment.  more » « less
Award ID(s):
2320678
PAR ID:
10481694
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
ISSN:
2474-9567
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Stress impacts our physical and mental health as well as our social life. A passive and contactless indoor stress monitoring system can unlock numerous important applications such as workplace productivity assessment, smart homes, and personalized mental health monitoring. While the thermal signatures from a user's body captured by a thermal camera can provide important information about the fight-flight response of the sympathetic and parasympathetic nervous system, relying solely on thermal imaging for training a stress prediction model often lead to overfitting and consequently a suboptimal performance. This paper addresses this challenge by introducing ThermaStrain, a novel co-teaching framework that achieves high-stress prediction performance by transferring knowledge from the wearable modality to the contactless thermal modality. During training, ThermaStrain incorporates a wearable electrodermal activity (EDA) sensor to generate stress-indicative representations from thermal videos, emulating stress-indicative representations from a wearable EDA sensor. During testing, only thermal sensing is used, and stress-indicative patterns from thermal data and emulated EDA representations are extracted to improve stress assessment. The study collected a comprehensive dataset with thermal video and EDA data under various stress conditions and distances. ThermaStrain achieves an F1 score of 0.8293 in binary stress classification, outperforming the thermal-only baseline approach by over 9%. Extensive evaluations highlight ThermaStrain's effectiveness in recognizing stress-indicative attributes, its adaptability across distances and stress scenarios, real-time executability on edge platforms, its applicability to multi-individual sensing, ability to function on limited visibility and unfamiliar conditions, and the advantages of its co-teaching approach. These evaluations validate ThermaStrain's fidelity and its potential for enhancing stress assessment. 
    more » « less
  2. Stress impacts our physical and mental health as well as our social life. A passive and contactless indoor stress monitoring system can unlock numerous important applications such as workplace productivity assessment, smart homes, and personalized mental health monitoring. While the thermal signatures from a user's body captured by a thermal camera can provide important information about the ``fight-flight'' response of the sympathetic and parasympathetic nervous system, relying solely on thermal imaging for training a stress prediction model often lead to overfitting and consequently a suboptimal performance. This paper addresses this challenge by introducing ThermaStrain, a novel co-teaching framework that achieves high-stress prediction performance by transferring knowledge from the wearable modality to the contactless thermal modality. During training, ThermaStrain incorporates a wearable electrodermal activity (EDA) sensor to generate stress-indicative representations from thermal videos, emulating stress-indicative representations from a wearable EDA sensor. During testing, only thermal sensing is used, and stress-indicative patterns from thermal data and emulated EDA representations are extracted to improve stress assessment. The study collected a comprehensive dataset with thermal video and EDA data under various stress conditions and distances. ThermaStrain achieves an F1 score of $0.8293$ in binary stress classification, outperforming the thermal-only baseline approach by over 9\%. Extensive evaluations highlight ThermaStrain's effectiveness in recognizing stress-indicative attributes, its adaptability across distances and stress scenarios, real-time executability on edge platforms, its applicability to multi-individual sensing, ability to function on limited visibility and unfamiliar conditions, and the advantages of its co-teaching approach. These evaluations validate ThermaStrain's fidelity and its potential for enhancing stress assessment. 
    more » « less
  3. The ability to monitor mental effort during a task using a wearable sensor may improve productivity for both work and study. The use of the electrodermal activity (EDA) signal for tracking mental effort is an emerging area of research. Through analysis of over 92 h of data collected with the Empatica E4 on a single participant across 91 different activities, we report on the efficacy of using EDA features getting at signal intensity, signal dispersion, and peak intensity for prediction of the participant’s self-reported mental effort. We implemented the logistic regression algorithm as an interpretable machine learning approach and found that features related to signal intensity and peak intensity were most useful for the prediction of whether the participant was in a self-reported high mental effort state; increased signal and peak intensity were indicative of high mental effort. When cross-validated by activity moderate predictive efficacy was achieved (AUC = 0.63, F1 = 0.63, precision = 0.64, recall = 0.63) which was significantly stronger than using the model bias alone. Predicting mental effort using physiological data is a complex problem, and our findings add to research from other contexts showing that EDA may be a promising physiological indicator to use for sensor-based self-monitoring of mental effort throughout the day. Integration of other physiological features related to heart rate, respiration, and circulation may be necessary to obtain more accurate predictions. 
    more » « less
  4. Stress detection and monitoring is an active area of research with important implications for an individual's personal, professional, and social health. Current approaches for stress classification use traditional machine learning algorithms trained on features computed from multiple sensor modalities. These methods are data and computation-intensive, rely on hand-crafted features, and lack reproducibility. These limitations impede the practical use of stress detection and classification systems in the real world. To overcome these shortcomings, we propose Stressalyzer, a novel stress classification and personalization framework from single-modality sensor data without feature computation and selection. Stressalyzer uses only Electrodermal activity (EDA) sensor data while providing competitive results compared to the state-of-the-art techniques that use multiple sensor modalities and are computationally expensive due to the calculation of large number of features. Using the dataset collected in a laboratory setting from $15$ subjects, our single-channel neural network-based model achieves a classification accuracy of 92.9% and an f1 score of 0.89 for binary stress classification. Our leave-one-subject-out analysis establishes the subjective nature of stress and shows that personalizing stress models using Stressalyzer significantly improves the model performance. Without model personalization, we found a performance decline in 40% of the subjects, suggesting the need for model personalization. 
    more » « less
  5. Wearable devices are being increasingly used in high-impact health applications including vital sign monitoring, rehabilitation, and movement disorders. Wearable health monitoring can aid in the United Nations social development goal of healthy lives by enabling early warning, risk reduction, and management of health risks. Health tasks on wearable devices employ multiple sensors to collect relevant parameters of user’s health and make decisions using machine learning (ML) algorithms. The ML algorithms assume that data from all sensors are available for the health monitoring tasks. However, the applications may encounter missing or incomplete data due to user error, energy limitations, or sensor malfunction. Missing data results in significant loss of accuracy and quality of service. This paper presents a novel Classifier-Aware iMputation (CAM) approach to impute missing data such that classifier accuracy for health tasks is not affected. Specifically, CAM employs unsupervised clustering followed by a principled search algorithm to uncover imputation patterns that maintain high accuracy. Evaluations on seven diverse health tasks show that CAM achieves accuracy within 5% of the baseline with no missing data when one sensor is missing. CAM also achieves significantly higher accuracy compared to generative approaches with negligible energy overhead, making it suitable for wide range of wearable applications. 
    more » « less