skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Vertical Motions in Orographic Cloud Systems over the Payette River Basin Part 1: Recovery of Vertical Motions and their Uncertainty from Airborne Doppler Radial Velocity Measurements.
Vertical motions over the complex terrain of Idaho’s Payette River Basin were observed by the Wyoming Cloud Radar (WCR) during 23 flights of the Wyoming King Air during the SNOWIE field campaign. The WCR measured radial velocity, V_r, which includes the reflectivity-weighted terminal velocity of hydrometeors (V_t), vertical air velocity (w), horizontal wind contributions as a result of aircraft attitude deviations, and aircraft motion. Aircraft motion was removed through standard processing. To retrieve vertical radial velocity (W), V_r was corrected using rawinsonde data and aircraft attitude measurements. w was then calculated by subtracting the mean W, (W ̅), at a given height along a flight leg long enough for W ̅ to equal the mean reflectivity weighted terminal velocity, (V_t ) ̅, at that height. The accuracy of the w and (V_t ) ̅ retrievals were dependent on satisfying assumptions along a given flight leg that the winds at a given altitude above/below the aircraft did not vary, the vertical air motions at a given altitude sum to 0 m s-1, and (V_t ) ̅ at a given altitude did not vary. The uncertainty in the w retrieval associated with each assumption is evaluated. Case studies and a project wide summary show that this methodology can provide estimates of w that closely match gust probe measurements of w at the aircraft level. Flight legs with little variation in equivalent reflectivity factor at a given height and large horizontal echo extent were associated with the least retrieval uncertainty. The greatest uncertainty occurred in regions with isolated convective turrets or at altitudes where split cloud layers were present.  more » « less
Award ID(s):
2016106 2016077
PAR ID:
10351849
Author(s) / Creator(s):
Editor(s):
Rapp, Anita
Date Published:
Journal Name:
Journal of applied meteorology and climatology
ISSN:
1558-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In Part II, two classes of vertical motions, fixed (associated with vertically propagating gravity waves tied to flow over topography) and transient (associated primarily with vertical wind shear and conditional instability within passing weather systems), were diagnosed over the Payette River basin of Idaho during the Seeded and Natural Orographic Wintertime Clouds: The Idaho Experiment (SNOWIE). This paper compares vertical motions retrieved from airborne Doppler radial velocity measurements with those from a 900-m-resolution model simulation to determine the impact of transient vertical motions on trajectories of ice particles initiated by airborne cloud seeding. An orographic forcing index, developed to compare vertical motion fields retrieved from the radar with the model, showed that fixed vertical motions were well resolved by the model while transient vertical motions were not. Particle trajectories were calculated for 75 cross-sectional pairs, each differing only by the observed and modeled vertical motion field. Wind fields and particle terminal velocities were otherwise identical in both trajectories so that the impact of transient vertical circulations on particle trajectories could be isolated. In 66.7% of flight-leg pairs, the distance traveled by particles in the model and observations differed by less than 5 km with transient features having minimal impact. In 9.3% of the pairs, model and observation trajectories landed within the ideal target seeding elevation range (>2000 m), whereas, in 77.3% of the pairs, both trajectories landed below the ideal target elevation. Particles in the observations and model descended into valleys on the mountains’ lee sides in 94.2% of cases in which particles traveled less than 37 km. 
    more » « less
  2. Abstract High-resolution airborne cloud Doppler radars such as the W-band Wyoming Cloud Radar (WCR) have, since the 1990s, investigated cloud microphysical, kinematic, and precipitation structures down to 30-m resolution. These measurements revolutionized our understanding of fine-scale cloud structure and the scales at which cloud processes occur. Airborne cloud Doppler radars may also resolve cloud turbulent eddy structure directly at 10-m scales. To date, cloud turbulence has been examined as variances and dissipation rates at coarser resolution than individual pulse volumes. The present work advances the potential of near-vertical pulse-pair Doppler spectrum width as a metric for turbulent air motion. Doppler spectrum width has long been used to investigate turbulent motions from ground-based remote sensors. However, complexities of airborne Doppler radar and spectral broadening resulting from platform and hydrometeor motions have limited airborne radar spectrum width measurements to qualitative interpretation only. Here we present the first quantitative validation of spectrum width from an airborne cloud radar. Echoes with signal-to-noise ratio greater than 10 dB yield spectrum width values that strongly correlate with retrieved mean Doppler variance for a range of nonconvective cloud conditions. Further, Doppler spectrum width within turbulent regions of cloud also shows good agreement with in situ eddy dissipation rate (EDR) and gust probe variance. However, the use of pulse-pair estimated spectrum width as a metric for turbulent air motion intensity is only suitable for turbulent air motions more energetic than the magnitude of spectral broadening, estimated to be <0.4 m s−1for the WCR in these cases. Significance StatementDoppler spectrum width is a widely available airborne radar measurement previously considered too uncertain to attribute to atmospheric turbulence. We validate, for the first time, the response of spectrum width to turbulence at and away from research aircraft flight level and demonstrate that under certain conditions, spectrum width can be used to diagnose atmospheric turbulence down to scales of tens of meters. These high-resolution turbulent air motion intensity measurements may better connect to cloud hydrometeor process and growth response seen in coincident radar reflectivity structures proximate to turbulent eddies. 
    more » « less
  3. Rapp, Anita (Ed.)
    Updrafts in wintertime cloud systems over mountainous regions can be described as fixed, mechanically driven by the terrain under a given ambient wind and stability profile (i.e., vertically propagating gravity waves), and transient, related to vertical wind shear and conditional instability within passing weather systems. This analysis quantifies the magnitude of fixed and transient updraft structures over the Payette River Basin sampled during the Seeded and Natural Orographic Wintertime Clouds: the Idaho Experiment (SNOWIE). Vertical motions were retrieved from Wyoming Cloud Radar measurements of radial velocity using the algorithm presented in Part 1. Transient circulations were removed and fixed orographic circulations were quantified by averaging vertical circulations along repeated cross sections over the same terrain during the campaign. Fixed orographic vertical circulations had magnitudes of 0.3-0.5 m s-1. These fixed vertical circulations comprised a background circulation in which transient circulations were embedded. Transient vertical circulations are shown to be associated with transient wave motions, cloud top generating cells, convection, and turbulence. Representative transient vertical circulations are illustrated and data from rawinsondes over the Payette River Basin are used to infer the relationship of the vertical circulations to shear and instability. Maximum updrafts are shown to exceed 5 m s 1 within Kelvin-Helmholtz waves, 4 m s-1 associated with transient gravity waves, 3 m s-1 in generating cells, 6 m s-1 in elevated convection, 4 m s-1 in surface-based deep convection, 5 m s-1 in boundary layer turbulence, and 9 m s-1 in shear-induced turbulence. 
    more » « less
  4. Abstract Observations of the air vertical velocities ( w air ) in supercell updrafts are presented, including uncertainty estimates, from radiosonde GPS measurements in two supercells. These in situ observations were collected during the Colorado State University Convective Cloud Outflows and Updrafts Experiment (C 3 LOUD-Ex) in moderately unstable environments in Colorado and Wyoming. Based on the radiosonde accelerations, instances when the radiosonde balloon likely bursts within the updraft are determined, and adjustments are made to account for the subsequent reduction in radiosonde buoyancy. Before and after these adjustments, the maximum estimated w air values are 36.2 and 49.9 m s −1 , respectively. Radar data are used to contextualize the in situ observations and suggest that most of the radiosonde observations were located several kilometers away from the most intense vertical motions. Therefore, the radiosonde-based w air values presented likely underestimate the maximum values within these storms due to these sampling biases, as well as the impacts from hydrometeors, which are not accounted for. When possible, radiosonde-based w air values were compared to estimates from dual-Doppler methods and from parcel theory. When the radiosondes observed their highest w air values, dual-Doppler methods generally produced 15–20 m s −1 lower w air for the same location, which could be related to the differences in the observing systems’ resolutions. In situ observations within supercell updrafts, which have been limited in recent decades, can be used to improve our understanding and modeling of storm dynamics. This study provides new in situ observations, as well as methods and lessons that could be applied to future field campaigns. 
    more » « less
  5. Abstract Properties of frozen hydrometeors in clouds remain difficult to sense remotely. Estimates of number concentration, distribution shape, ice particle density, and ice water content are essential for connecting cloud processes to surface precipitation. Progress has been made with dual-frequency radars, but validation has been difficult because of lack of particle imaging and sizing observations collocated with the radar measurements. Here, data are used from two airborne profiling (up and down) radars, the W-band Wyoming Cloud Radar and the Ka-band Profiling Radar, allowing for Ka–W-band dual-wavelength ratio (DWR) profiles. The aircraft (the University of Wyoming King Air) also carried a suite of in situ cloud and precipitation probes. This arrangement is optimal for relating the “flight-level” DWR (an average from radar gates below and above flight level) to ice particle size distributions measured by in situ optical array probes, as well as bulk properties such as minimum snow particle density and ice water content. This comparison reveals a strong relationship between DWR and the ice particle median-volume diameter. An optimal range of DWR values ensures the highest retrieval confidence, bounded by the radars’ relative calibration and DWR saturation, found here to be about 2.5–7.5 dB. The DWR-defined size distribution shape is used with a Mie scattering model and an experimental mass–diameter relationship to test retrievals of ice particle concentration and ice water content. Comparison with flight-level cloud-probe data indicate good performance, allowing microphysical interpretations for the rest of the vertical radar transects. 
    more » « less