The AMPLIFY project, funded through the NSF HSI Program, seeks to amplify the educational change leadership of Engineering Instructional Faculty (EIF) working at Hispanic Serving Institutions (HSIs). HSIs are public or private institutions of higher education enrolling over 25% full-time undergraduate Hispanic or Latinx-identifying students [1]. Many HSIs are exemplars of developing culturally responsive learning environments and supporting the persistence and access of Latinx engineering students, as well as students who identify as members of other marginalized populations [2]. Our interest in the EIF population at HSIs arises from the growing body of literature indicating that these faculty play a central role in educational change through targeted initiatives, such as student-centered support programs and the use of inclusive curricula that connect to their students’ cultural identities [3]–[7]. Our research focuses on exploring methods for amplifying the engineering educational change efforts at HSIs by 1) making visible the experiences of engineering instructional faculty at HSIs and 2) designing, implementing, and evaluating a leadership development model for engineering instructional faculty, thereby 3) equipping and supporting these faculty as they lead educational change efforts. To achieve these goals, our project team, comprising educational researchers, engineering instructional faculty, instructional designers, and graduate students frommore »
This content will become publicly available on June 26, 2023
Work in Progress: Faculty choice and reflection on teaching strategies to improve engineering self-efficacy
This work-in-progress paper seeks to examine faculty choice of teaching strategies to improve students’ engineering self-efficacy [1], [2] (belief in one’s abilities to successfully accomplish tasks in engineering) as well as their reflections on the effectiveness of the teaching strategy. Increases in self-efficacy have been related to improved academic and career outcomes [3], especially for women in non-traditional fields such as engineering. The goal of the study is to determine simple yet effective strategies that can be implemented in engineering classrooms to improve self-efficacy.
Seven engineering faculty members participated in a faculty learning community (FLC), a semester long program to learn about teaching strategies in each of the four areas of self-efficacy; mastery experiences (e.g., active learning, scaffolding), vicarious learning (e.g., guest lectures, peer mentors, group work), social persuasion (e.g., constructive feedback, positive self-talk), and emotional arousal (e.g., test anxiety, building rapport). The faculty then chose and implemented strategies in each of the four areas in one of their engineering courses. Monthly meetings of the FLC during implementation allowed faculty to share their experiences and suggestions for refinements in their teaching strategy.
The paper examines the faculty member choice (why they chose to use particular strategies in their course) as more »
- Award ID(s):
- 1926480
- Publication Date:
- NSF-PAR ID:
- 10352029
- Journal Name:
- 2022 ASEE Annual Conference
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This research paper examines faculty perceptions of and approaches towards fostering students’ motivation to learn engineering at Hispanic-Serving Institutions (HSIs). By aligning learning experiences with what motivates Hispanic or Latinx students, the resulting higher student motivation could increase the sense of belonging for underrepresented populations in engineering, ultimately improving student retention and persistence through meaningful instructional practices. Motivation to learn encompasses individuals' perspectives about themselves, the course material, the broader educational curriculum, and their role in their own learning [1]. Students’ motivation can be supported or hindered by their interactions with others, peers, and educators. As such, an educator’s teaching style is a critical part of this process [2]. Therefore, because of the link between a faculty member’s ability to foster student motivation and improved learning outcomes, this paper seeks to explore how engineering faculty approach student motivation in their course designs at Hispanic-Serving Institutions. Humans are curious beings naturally drawn to exploration and learning. Self Determination Theory (SDT), popularized by Ryan and Deci, describes the interconnection of extrinsic (external) and intrinsic (internal) motivators, acknowledging the link between student’s physiological needs and their learning motivations [1], [3]. SDT proposes that students must experience the satisfaction of competence, autonomy, and relatednessmore »
-
Major challenges in engineering education include retention of undergraduate engineering students (UESs) and continued engagement after the first year when concepts increase in difficulty. Additionally, employers, as well as ABET, look for students to demonstrate non-technical skills, including the ability to work successfully in groups, the ability to communicate both within and outside their discipline, and the ability to find information that will help them solve problems and contribute to lifelong learning. Teacher education is also facing challenges given the recent incorporation of engineering practices and core ideas into the Next Generation Science Standards (NGSS) and state level standards of learning. To help teachers meet these standards in their classrooms, education courses for preservice teachers (PSTs) must provide resources and opportunities to increase science and engineering knowledge, and the associated pedagogies. To address these challenges, Ed+gineering, an NSF-funded multidisciplinary collaborative service learning project, was implemented into two sets of paired-classes in engineering and education: a 100 level mechanical engineering class (n = 42) and a foundations class in education (n = 17), and a fluid mechanics class in mechanical engineering technology (n = 23) and a science methods class (n = 15). The paired classes collaborated in multidisciplinary teams ofmore »
-
This is a research study that investigates the range of conceptions of prototyping in engineering design courses through exploring the conceptions and implementations from the instructors’ perspective. Prototyping is certainly an activity central to engineering design. The context of prototyping to support engineering education and practice has a range of implementations in an undergraduate engineering curriculum, from first-year engineering to capstone engineering design experiences. Understanding faculty conceptions’ of the reason, purpose, and place of prototyping can help illustrate how teaching and learning of the engineering design process is realistically implemented across a curriculum and how students are prepared for work practice. We seek to understand, and consequently improve, engineering design teaching and learning, through transformations of practice that are based on engineering education research. In this exploratory study, we interviewed three faculty members who teach engineering design in project-based learning courses across the curriculum of an undergraduate engineering program. This builds on related work done by the authors that previously investigated undergraduate engineering students’ conceptions of prototyping activities and process. With our instructor participants, a similar interview protocol was followed through semi-structured qualitative interviews. Data analysis has been undertaken through an emerging thematic analysis of these interview transcripts. Early findingsmore »
-
A new Research Experience for Teachers (RET) site was established in the Department of Civil, Construction, and Environmental Engineering at North Dakota State University (NDSU) with funding from the National Science Foundation Division of Engineering Education and Centers (NSF Award #1953102). The site focused on civil engineering instruction around the theme of mitigating natural disasters for secondary education (6th to 12th grade) teachers. Eight local teachers and one pre-service teacher (who comprised the first cohort) were provided with a six-week long authentic research experience during the summer, which they translated into a hands-on curriculum for their classrooms during the 2021-2022 academic year. Partnerships were developed between the host institution, area teachers and local partners from civil engineering industries. This paper will summarize the lessons learned by the authors as well as the effectiveness of the program activities to accomplish two objectives: (1) provide a deeper understanding of civil engineering and (2) develop better abilities among secondary education teachers to prepare future science, technology, engineering and mathematics (STEM) leaders. Several strengths were identified by the authors as they reflected on the summer activities including the successes in creating strong connections between the teachers, faculty members and graduate students, and the industrymore »